共 50 条
Synergistic Effects of Co3O4-gC3N4-Coated ZnO Nanoparticles: A Novel Approach for Enhanced Photocatalytic Degradation of Ciprofloxacin and Hydrogen Evolution via Water Splitting
被引:2
|作者:
Machin, Abniel
[1
]
Morant, Carmen
[2
]
Soto-Vazquez, Loraine
[4
]
Resto, Edgard
[3
,4
]
Duconge, Jose
[5
]
Cotto, Maria
[5
]
Berrios-Rolon, Pedro J.
[5
]
Martinez-Perales, Cristian
[5
]
Marquez, Francisco
[5
]
机构:
[1] Univ Ana G Mendez, Div Sci Technol & Environm, Environm Catalysis Res Lab, Carolina, PR 00926 USA
[2] Autonomous Univ Madrid, Dept Appl Phys, Madrid 28049, Spain
[3] Inst Ciencia Mat Nicolas Cabrera, Madrid 28049, Spain
[4] Univ Puerto Rico, Mat Characterizat Ctr Inc, Mol Sci Res Ctr, San Juan, PR 00926 USA
[5] Univ Ana G Mendez Gurabo Campus, Dept Nat Sci & Technol, Div Nat Sci, Nanomat Res Grp, Gurabo, PR 00778 USA
来源:
关键词:
photodegradation;
photocatalytic hydrogen evolution;
ciprofloxacin;
G-C3N4;
NANOSHEETS;
QUANTUM DOTS;
OXIDATION;
D O I:
10.3390/ma17051059
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
This research evaluates the efficacy of catalysts based on Co3O4-gC3N4@ZnONPs in the degradation of ciprofloxacin (CFX) and the photocatalytic production of H2 through water splitting. The results show that CFX experiences prompt photodegradation, with rates reaching up to 99% within 60 min. Notably, the 5% (Co3O4-gC3N4)@ZnONPs emerged as the most potent catalyst. The recyclability studies of the catalyst revealed a minimal activity loss, approximately 6%, after 15 usage cycles. Using gas chromatography-mass spectrometry (GC-MS) techniques, the by-products of CFX photodegradation were identified, which enabled the determination of the potential degradation pathway and its resultant products. Comprehensive assessments involving photoluminescence, bandgap evaluations, and the study of scavenger reactions revealed a degradation mechanism driven primarily by superoxide radicals. Moreover, the catalysts demonstrated robust performance in H2 photocatalytic production, with some achieving outputs as high as 1407 mu mol/hg in the visible spectrum (around 500 nm). Such findings underline the potential of these materials in environmental endeavors, targeting both water purification from organic pollutants and energy applications.
引用
收藏
页数:22
相关论文