Generation of the high power by a coaxial dielectric barrier discharge with a perforated electrode in atmospheric pressure air

被引:1
|
作者
Liu, Feng [1 ,2 ,3 ]
Wang, Yun [1 ]
Wang, Weiwei [1 ,2 ,3 ]
Shi, Guihu [1 ]
Fan, Zhihui [1 ,2 ,3 ]
Wang, Jingquan [1 ,2 ,3 ]
Han, Haiyan [1 ,2 ,3 ]
机构
[1] Hebei Univ Engn, Sch Math & Phys, Handan 056038, Peoples R China
[2] Hebei Univ Engn, Hebei Comp Optic Imaging & Photoelect Detect Tech, Handan 056038, Peoples R China
[3] Hebei Univ Engn, Hebei Int Joint Res Ctr Comp Opt Imaging & Intell, Handan 056038, Peoples R China
基金
中国国家自然科学基金;
关键词
TEMPERATURE-MEASUREMENTS; SURFACE-TREATMENT; WATER POLLUTANTS; NEARBY NEEDLES; PLASMA; DBD; DIAGNOSTICS; BANDS; RATIO;
D O I
10.1063/5.0160137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The power is believed to play an important role in the treatment effects in both direct and indirect plasma applications. Generation of the high power has been realized by using a perforated inner electrode for a coaxial dielectric barrier discharge (DBD) in atmospheric pressure air. Compared with a non-perforated inner electrode, the perforated electrode has a 10%-20% and 10%-30% increase in the applied power and the discharge power, respectively. The strengthened local electric field of the perforated electrode in the coaxial DBD provides favorable conditions for the generation of the micro-discharge, thus increasing the power. To shed light on the reasons for the increase in the power, an extensive analysis of the optical and electrical characteristics of the DBD with the perforated electrode and the non-perforated one was carried out, including transferred charge, total current, number of discharge pulses, dielectric capacitance, gap capacitance, vibrational and rotational temperatures, and electron temperature trend.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Pattern formation in dielectric barrier discharge in air at atmospheric pressure
    Dong, LF
    Li, XC
    Yin, ZQ
    Wang, L
    ACTA PHYSICA SINICA, 2002, 51 (10) : 2296 - 2301
  • [22] Effects of Airflows on Dielectric Barrier Discharge in Air at Atmospheric Pressure
    王战
    任春生
    聂秋月
    王德真
    Plasma Science and Technology, 2009, 11 (02) : 177 - 180
  • [23] Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure
    Laroussi, M
    Lu, X
    Kolobov, V
    Arslanbekov, R
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (05) : 3028 - 3030
  • [24] The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure
    Ráhel, J
    Sherman, DM
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (04) : 547 - 554
  • [25] Effect of electrode configuration on the uniformity of atmospheric pressure surface dielectric barrier air micro-discharge
    Xia, Yang
    Bi, Zhenhua
    Qi, Zhihua
    Ji, Longfei
    Zhao, Yao
    Chang, Xuewei
    Wang, Wenchun
    Liu, Dongping
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (08)
  • [26] Nanosecond Repetitively Pulsed Dielectric Barrier Discharge in Air at Atmospheric Pressure
    Shao Tao
    Zhang Cheng
    Niu Zheng
    Yu Yang
    Yan Ping
    Zhou Yuanxiang
    PLASMA SCIENCE & TECHNOLOGY, 2011, 13 (05) : 591 - 595
  • [27] Nanosecond Repetitively Pulsed Dielectric Barrier Discharge in Air at Atmospheric Pressure
    邵涛
    章程
    牛铮
    于洋
    严萍
    周远翔
    Plasma Science and Technology, 2011, 13 (05) : 591 - 595
  • [28] On the possibility of generating volume dielectric barrier discharge in air at atmospheric pressure
    M. V. Malashin
    S. I. Moshkunov
    V. Yu. Khomich
    E. A. Shershunova
    V. A. Yamshchikov
    Technical Physics Letters, 2013, 39 : 252 - 254
  • [29] Characteristics of dielectric barrier discharge in large air gap at atmospheric pressure
    Li, Xuechen
    Zhao, Huanhuan
    Jia, Pengying
    Chang, Yuanyuan
    Gaodianya Jishu/High Voltage Engineering, 2013, 39 (04): : 876 - 882
  • [30] On the possibility of generating volume dielectric barrier discharge in air at atmospheric pressure
    Malashin, M. V.
    Moshkunov, S. I.
    Khomich, V. Yu.
    Shershunova, E. A.
    Yamshchikov, V. A.
    TECHNICAL PHYSICS LETTERS, 2013, 39 (03) : 252 - 254