Rankformer: Leveraging Rank Correlation for Transformer-based Time Series Forecasting

被引:1
|
作者
Ouyang, Zuokun [1 ]
Jabloun, Meryem [1 ]
Ravier, Philippe [1 ]
机构
[1] Univ Orleans, PRISME Lab, Orleans, France
关键词
Time Series; Forecasting; Transformer; Rank Correlation; Nonlinear Dependencies;
D O I
10.1109/SSP53291.2023.10207937
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long-term forecasting problem for time series has been actively studied during the last several years, and preceding Transformer-based models have exploited various self-attention mechanisms to discover the long-range dependencies. However, the hidden dependencies required by the forecasting task are not always appropriately extracted, especially the nonlinear serial dependencies in some datasets. In this paper, we propose a novel Transformer-based model, namely Rankformer, leveraging the rank correlation function and decomposition architecture for long-term time series forecasting tasks. Rankformer outperforms four state-of-the-art Transformer-based models and two RNN-based models for different forecasting horizons on different datasets on which extensive experiments were conducted.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 50 条
  • [11] RSMformer: an efficient multiscale transformer-based framework for long sequence time-series forecasting
    Tong, Guoxiang
    Ge, Zhaoyuan
    Peng, Dunlu
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1275 - 1296
  • [12] Enhancing Transformer-based models for long sequence time series forecasting via structured matrix
    Zhang, Zhicheng
    Wang, Yong
    Tan, Shaoqi
    Xia, Bowei
    Luo, Yujie
    NEUROCOMPUTING, 2025, 625
  • [13] RSMformer: an efficient multiscale transformer-based framework for long sequence time-series forecasting
    Guoxiang Tong
    Zhaoyuan Ge
    Dunlu Peng
    Applied Intelligence, 2024, 54 (2) : 1275 - 1296
  • [14] A systematic review for transformer-based long-term series forecasting
    Su, Liyilei
    Zuo, Xumin
    Li, Rui
    Wang, Xin
    Zhao, Heng
    Huang, Bingding
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (03)
  • [15] Time Series Forecasting Based on Convolution Transformer
    Wang, Na
    Zhao, Xianglian
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 976 - 985
  • [16] TVC Former: A transformer-based long-term multivariate time series forecasting method using time-variable coupling correlation graph
    Liu, Zhenyu
    Feng, Yuan
    Liu, Hui
    Tang, Ruining
    Yang, Bo
    Zhang, Donghao
    Jia, Weiqiang
    Tan, Jianrong
    KNOWLEDGE-BASED SYSTEMS, 2025, 314
  • [17] AGCNT: Adaptive Graph Convolutional Network for Transformer-based Long Sequence Time-Series Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Qin, Yang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3439 - 3442
  • [18] Leveraging Transformer-based autoencoders for low-rank multi-view subspace clustering
    Lin, Yuxiu
    Liu, Hui
    Yu, Xiao
    Zhang, Caiming
    PATTERN RECOGNITION, 2025, 161
  • [19] A Transformer-based Framework for Multivariate Time Series Representation Learning
    Zerveas, George
    Jayaraman, Srideepika
    Patel, Dhaval
    Bhamidipaty, Anuradha
    Eickhoff, Carsten
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2114 - 2124
  • [20] Adversarial Transformer-Based Anomaly Detection for Multivariate Time Series
    Yu, Xinying
    Zhang, Kejun
    Liu, Yaqi
    Zou, Bing
    Wang, Jun
    Wang, Wenbin
    Qian, Rong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2471 - 2480