A Multi-Scale Context Aware Attention Model for Medical Image Segmentation

被引:16
|
作者
Alam, Md. Shariful [1 ]
Wang, Dadong [2 ]
Liao, Qiyu [2 ]
Sowmya, Arcot [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
[2] CSIRO, Imaging & Comp Vis Res Grp, Data61, Sydney, NSW 2122, Australia
关键词
Multi-scale context; dilated convolution; dilated inception; medical image segmentation; U-Net; squeeze and excitation unit; attention; CONNECTIONS; NETWORK;
D O I
10.1109/JBHI.2022.3227540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation is critical for efficient diagnosis of diseases and treatment planning. In recent years, convolutional neural networks (CNN)-based methods, particularly U-Net and its variants, have achieved remarkable results on medical image segmentation tasks. However, they do not always work consistently on images with complex structures and large variations in regions of interest (ROI). This could be due to the fixed geometric structure of the receptive fields used for feature extraction and repetitive down-sampling operations that lead to information loss. To overcome these problems, the standard U-Net architecture is modified in this work by replacing the convolution block with a dilated convolution block to extract multi-scale context features with varying sizes of receptive fields, and adding a dilated inception block between the encoder and decoder paths to alleviate the problem of information recession and the semantic gap between features. Furthermore, the input of each dilated convolution block is added to the output through a squeeze and excitation unit, which alleviates the vanishing gradient problem and improves overall feature representation by re-weighting the channel-wise feature responses. The original inception block is modified by reducing the size of the spatial filter and introducing dilated convolution to obtain a larger receptive field. The proposed network was validated on three challenging medical image segmentation tasks with varying size ROIs: lung segmentation on chest X-ray (CXR) images, skin lesion segmentation on dermoscopy images and nucleus segmentation on microscopy cell images. Improved performance compared to state-of-the-art techniques demonstrates the effectiveness and generalisability of the proposed Dilated Convolution and Inception blocks-based U-Net (DCI-UNet).
引用
收藏
页码:3731 / 3739
页数:9
相关论文
共 50 条
  • [21] MSAR-Net: A multi-scale attention residual network for medical image segmentation
    Li, Xiaoheng
    Chen, Cheng
    Chen, Yunqing
    Yu, Ming-an
    Xiao, Ruoxiu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [22] DSA: Deformable Segmentation Attention for Multi-Scale Fisheye Image Segmentation
    Jiang, Junzhe
    Xu, Cheng
    Liu, Hongzhe
    Fu, Ying
    Jian, Muwei
    ELECTRONICS, 2023, 12 (19)
  • [23] Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
    Zhang, Renhan
    Luo, Xuegang
    Lv, Junrui
    Cao, Junyang
    Zhu, Yangping
    Wang, Juan
    Zheng, Bochuan
    IEEE ACCESS, 2025, 13 : 15226 - 15243
  • [24] MAXFormer: Enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion
    Liang, Zhiwei
    Zhao, Kui
    Liang, Gang
    Li, Siyu
    Wu, Yifei
    Zhou, Yiping
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [25] Multi-Scale Orthogonal Model CNN-Transformer for Medical Image Segmentation
    Zhou, Wuyi
    Zeng, Xianhua
    Zhou, Mingkun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (10)
  • [26] MSGAT: Multi-scale gated axial reverse attention transformer network for medical image segmentation
    Liu, Yanjun
    Yun, Haijiao
    Xia, Yang
    Luan, Jinyang
    Li, Mingjing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [27] MAGNet: A Convolutional Neural Network with Multi-Scale and Global Attention Modules for Medical Image Segmentation
    Bharati, Subrato
    Ahmad, M. Omair
    Swamy, M. N. S.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [28] DMAGNet: Dual-path multi-scale attention guided network for medical image segmentation
    Ji, Qiulang
    Wang, Jihong
    Ding, Caifu
    Wang, Yuhang
    Zhou, Wen
    Liu, Zijie
    Yang, Chen
    IET IMAGE PROCESSING, 2023, 17 (13) : 3631 - 3644
  • [29] Multi-scale convolutional attention frequency-enhanced transformer network for medical image segmentation
    Yan, Shun
    Yang, Benquan
    Chen, Aihua
    Zhao, Xiaoming
    Zhang, Shiqing
    INFORMATION FUSION, 2025, 119
  • [30] Style-aware and multi-scale attention for face image completion
    Liu H.
    Li S.
    Zhu X.
    Sun H.
    Zhang J.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (05): : 49 - 56