Trackintel: An open-source Python']Python library for human mobility analysis

被引:13
|
作者
Martin, Henry [1 ,2 ,4 ]
Hong, Ye [1 ]
Wiedemann, Nina [1 ]
Bucher, Dominik [3 ]
Raubal, Martin [1 ]
机构
[1] Inst Cartog & Geoinformat, ETH Zurich, Zurich, Switzerland
[2] Inst Adv Res Artificial Intelligence IARAI, Vienna, Austria
[3] c technol, Tessinerpl 7, CH-8002 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Cartog & Geoinformat HIL D 54 3, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
关键词
Human mobility analysis; Open-source software; Transport planning; Data mining; !text type='Python']Python[!/text; Tracking studies; SERVICES; PACKAGE; SPACE;
D O I
10.1016/j.compenvurbsys.2023.101938
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Over the past decade, scientific studies have used the growing availability of large tracking datasets to enhance our understanding of human mobility behavior. However, so far data processing pipelines for the varying data collection methods are not standardized and consequently limit the reproducibility, comparability, and trans-ferability of methods and results in quantitative human mobility analysis. This paper presents Trackintel, an open-source Python library for human mobility analysis. Trackintel is built on a standard data model for human mobility used in transport planning that is compatible with different types of tracking data. We introduce the main functionalities of the library that covers the full life-cycle of human mobility analysis, including processing steps according to the conceptual data model, read and write interfaces, as well as analysis functions (e.g., data quality assessment, travel mode prediction, and location labeling). We showcase the effectiveness of the Trackintel library through a case study with four different tracking datasets. Trackintel can serve as an essential tool to standardize mobility data analysis and increase the transparency and comparability of novel research on human mobility. The library is available open-source at https://github.com/mie-lab/trackintel.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] rasterMiner: An Open-Source Python']Python Library to Discover Knowledge From Raster Imagery Data
    Veena, Pamalla
    Rage, Uday Kiran
    Ogawa, Yoshiko
    Ohtake, Makiko
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 1160 - 1163
  • [32] problexity-An open-source Python']Python library for supervised learning problem complexity assessment
    Komorniczak, Joanna
    Ksieniewicz, Pawel
    NEUROCOMPUTING, 2023, 521 : 126 - 136
  • [33] Verification of an open-source Python']Python library for the simulation of district heating networks with complex topologies
    Boghetti, Roberto
    Kampf, Jerome H.
    ENERGY, 2024, 290
  • [34] CoSimPy: An open-source python']python library for MRI radiofrequency Coil EM/Circuit Cosimulation
    Zanovello, Umberto
    Seifert, Frank
    Bottauscio, Oriano
    Winter, Lukas
    Zilberti, Luca
    Ittermann, Bernd
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 216
  • [35] pyActigraphy: Open-source python']python package for actigraphy data visualization and analysis
    Hammad, Gregory
    Reyt, Mathilde
    Beliy, Nikita
    Baillet, Marion
    Deantoni, Michele
    Lesoinne, Alexia
    Muto, Vincenzo
    Schmidt, Christina
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)
  • [36] pyResearchInsights-An open-source Python']Python package for scientific text analysis
    Shetty, Sarthak J.
    Ramesh, Vijay
    ECOLOGY AND EVOLUTION, 2021, 11 (20): : 13920 - 13929
  • [37] pyActigraphy, an open-source python']python package for actigraphy data visualisation and analysis
    Hammad, G.
    Reyt, M.
    Beliy, N.
    Baillet, M.
    Deantoni, M.
    Lesoinne, A.
    Muto, V.
    Schmidt, C.
    JOURNAL OF SLEEP RESEARCH, 2020, 29 : 291 - 292
  • [38] Padasip: An open-source Python']Python toolbox for adaptive filtering
    Cejnek, Matous
    Vrba, Jan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [39] Open-source coupled aerostructural optimization using Python']Python
    Jasa, John P.
    Hwang, John T.
    Martins, Joaquim R. R. A.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (04) : 1815 - 1827
  • [40] HYSUPP: AN OPEN-SOURCE HYPERSPECTRAL UNMIXING PYTHON']PYTHON PACKAGE
    Rasti, Behnood
    Zouaoui, Alexandre
    Mairal, Julien
    Chanussot, Jocelyn
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1134 - 1137