Dissolution of Actinide Oxides in Carbonate Solutions

被引:0
|
作者
Chervyakov, N. M. [1 ,2 ]
Boyarintsev, A. V. [1 ,2 ]
Kostikova, G. V. [3 ]
Stepanov, S. I. [1 ,2 ]
机构
[1] Mendeleev Univ Chem Technol Russia, Moscow 125047, Russia
[2] Natl Res Nucl Univ, Moscow Engn Phys Inst, Ozersk Inst Technol, Ozersk 456783, Chelyabinsk Obl, Russia
[3] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Moscow 119071, Russia
基金
俄罗斯科学基金会;
关键词
uranium dioxide; triuranium octoxide; plutonium dioxide; neptunium dioxide; oxidative dissolution; carbonate media; hydrogen peroxide; persulfate; SPENT NUCLEAR-FUEL; HYDROGEN-PEROXIDE; URANIUM; PRECIPITATION; RECOVERY;
D O I
10.1134/S1066362223030025
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The dissolution step of uranium and mixed oxide uranium-plutonium spent nuclear fuel is a key initial step of a new alternative hydrometallurgical method-the CARBEX process. The study considers carbonate oxidizing systems NaHCO3/Na2CO3-H2O2/2Na(2)CO(3)& BULL;3H(2)O(2)/\M2S2O8, where M = Na, K, or NH4+, for dissolving actinide oxide powders. The chemical and physical factors that determine the rate of oxidative dissolution of powdered individual oxides UO2, U3O8, PuO2 and NpO2 in carbonate media were found. The results obtained are important for the development of the oxidative and sonochemical options of dissolution of highly calcined crystalline samples of uranium, plutonium and neptunium oxides, as well of spent nuclear fuel in carbonate media.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 50 条
  • [31] Dissolution kinetics of iron oxides in clay in oxalic acid solutions
    Sultana, U. K.
    Kurny, A. S. W.
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2012, 19 (12) : 1083 - 1087
  • [32] Dissolution kinetics of iron oxides in clay in oxalic acid solutions
    U.K. Sultana
    A.S.W. Kurny
    International Journal of Minerals Metallurgy and Materials, 2012, 19 (12) : 1083 - 1087
  • [33] Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions
    Panias, D
    Taxiarchou, M
    Paspaliaris, I
    Kontopoulos, A
    HYDROMETALLURGY, 1996, 42 (02) : 257 - 265
  • [34] Ligand-Specific Dissolution of Iron Oxides in Frozen Solutions
    Menacherry, Sunil Paul M.
    Kim, Kitae
    Lee, Woojin
    Choi, Cheol Ho
    Choi, Wonyong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (23) : 13766 - 13773
  • [35] Magnetic trends in actinide oxides
    Soderholm, Lynda
    Skanthakumar, S.
    Jin, Geng Bang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [36] DIFFUSION CHARACTERISTICS OF ACTINIDE OXIDES
    ANDO, K
    OISHI, Y
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1983, 20 (12) : 973 - 982
  • [37] REMPI spectroscopy of actinide oxides
    Heaven, MC
    Goncharov, V
    Han, JD
    Kaledin, L
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U319 - U319
  • [38] STUDY OF CALCIUM AND IRON CARBONATE DISSOLUTION KINETICS IN ORDER TO RESOLVE CORROSION PROBLEMS IN CARBONATE SOLUTIONS
    Artamonova, I. V.
    Gorichev, I. G.
    Godunov, E. B.
    CHEMICAL AND PETROLEUM ENGINEERING, 2015, 50 (9-10) : 605 - 609
  • [39] Adsorption behavior of amidoxime resin for separating actinide elements from aqueous carbonate solutions
    Nogami, M. (nogami@iri.or.jp), 1600, Elsevier Ltd (374): : 1 - 2
  • [40] Adsorption behavior of amidoxime resin for separating actinide elements from aqueous carbonate solutions
    Nogami, M
    Kim, SY
    Asanuma, N
    Ikeda, Y
    JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 374 (1-2) : 269 - 271