Probing the Solid-State Chemical Bonding of Energy-Storage- Relevant Na Materials at the Nanoscale using Low-Loss Electron Energy Loss Spectroscopy

被引:0
|
作者
Matthews, Kevin C. [1 ]
Guo, Xuelin [1 ]
Yu, Guihua [1 ,2 ]
Warner, Jamie [1 ,2 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 01期
关键词
SODIUM METAL; ABSORPTION; BATTERIES;
D O I
10.1021/acs.jpcc.2c08103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mapping the Na ion chemical bonding state in energy-related materials is one of the key challenges for understanding heterogeneity in interfacial regions, such as in solid-electrolyte interphases. Here, we use low-loss electron energy loss spectroscopy to study Na bonding in various energy-related materials. Both the plasmon region and Na L2,3 edge regions are measured using a direct electron detector in electron energy loss spectroscopy (EELS) and provide unique spectroscopic peaks and profiles for various compounds. The EELS spectra enable the identification of Na bonding at the nanoscale using electron doses that are considerably lower than when using the Na K edge region and therefore induce less damage to the sample and are more indicative of the intrinsic Na state. Finally, we show how EELS can be used to identify various Na bonding differences across regions of Na deposited by electrochemical methods using Na-TFSI electrolyte, which is a promising type of electrolyte for Na-ion batteries. These results provide insights into how EELS can be used for studying spatial heterogeneity in energy-storage-related Na materials.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [41] Determining the bonding in intermetallics using electron energy loss spectroscopy and density functional theory
    Botton, GA
    Humphreys, CJ
    INTERMETALLICS, 1999, 7 (07) : 829 - 833
  • [42] Nanoscale Probing of Local Hydrogen Heterogeneity in Disordered Carbon Nitrides with Vibrational Electron Energy-Loss Spectroscopy
    Haiber, Diane M.
    Crozier, Peter A.
    ACS NANO, 2018, 12 (06) : 5463 - 5472
  • [43] Clarification of oxygen bonding on diamond surfaces by low energy electron stimulated desorption and high resolution electron energy loss spectroscopy
    Laikhtman, A
    Lafosse, A
    Le Coat, Y
    Azria, R
    Hoffman, A
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (03): : 1794 - 1799
  • [44] Composition fluctuations in dilute nitride (Ga,In)(N,As)/GaAs heterostructures measured by low-loss electron energy-loss spectroscopy
    Kong, X.
    Trampert, A.
    Ploog, K. H.
    MICRON, 2006, 37 (05) : 465 - 472
  • [45] VIBRATIONAL AND ELECTRONIC-SPECTRA OF ORGANIC-MOLECULES BY SOLID-STATE ELECTRON-ENERGY-LOSS SPECTROSCOPY (EELS)
    MICHL, J
    DAVID, DE
    ANTIC, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 206 : 153 - ORGN
  • [46] Probing the bulk plasmon continuum of layered materials through electron energy loss spectroscopy in a reflection geometry
    Boyd, Christian
    Yeo, Luke
    Phillips, Philip W.
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [47] Using electron energy-loss spectroscopy to measure nanoscale electronic and vibrational dynamics in a TEM
    Kim, Ye-Jin
    Palmer, Levi D. D.
    Lee, Wonseok
    Heller, Nicholas J. J.
    Cushing, Scott K. K.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (05):
  • [48] Comment on 'Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy'
    Walther, Thomas
    NANOTECHNOLOGY, 2018, 29 (31)
  • [49] Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy
    Mundy, Julia A.
    Mao, Qingyun
    Brooks, Charles M.
    Schlom, Darrell G.
    Muller, David A.
    APPLIED PHYSICS LETTERS, 2012, 101 (04)
  • [50] Probing the energy barriers and stages of membrane protein unfolding using solid-state NMR spectroscopy
    Xiao, Peng
    Drewniak, Philip
    Dingwell, Dylan Archer
    Brown, Leonid S.
    Ladizhansky, Vladimir
    SCIENCE ADVANCES, 2024, 10 (20):