Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data

被引:6
|
作者
Wang, Zhirong [1 ]
Chen, Ming [1 ]
Feng, Guofu [1 ]
机构
[1] Shanghai Ocean Univ, Sch Informat Sci, Shanghai 201306, Peoples R China
关键词
emotion recognition; multi-channels EEG; cross-subject; CNN; NETWORK;
D O I
10.3390/electronics12112359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In our life, emotions often have a profound impact on human behavior, especially for drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to accurately discern the emotional states of drivers in order to preemptively address and mitigate any negative emotions that may otherwise manifest and compromise driving behavior. In contrast to many current studies that rely on complex and deep neural network models to achieve high accuracy, this research aims to explore the potential of achieving high recognition accuracy using shallow neural networks through restructuring the structure and dimensions of the data. In this study, we propose an end-to-end convolutional neural network (CNN) model called simply ameliorated CNN (SACNN) to address the issue of low accuracy in cross-subject emotion recognition. We extracted features and converted dimensions of EEG signals from the SEED dataset from the BCMI Laboratory to construct 62-dimensional data, and obtained the optimal model configuration through ablation experiments. To further improve recognition accuracy, we selected the top 10 channels with the highest accuracy by separately training the EEG data of each of the 62 channels. The results showed that the SACNN model achieved an accuracy of 88.16% based on raw cross-subject data, and an accuracy of 91.85% based on EEG channel data from the top 10 channels. In addition, we explored the impact of the position of the BN and dropout layers on the model through experiments, and found that a targeted shallow CNN model performed better than deeper and larger perceptual field CNN models. Furthermore, we discuss herein the future issues and challenges of driver emotion recognition in promising smart city applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
    Cui, Jian
    Lan, Zirui
    Sourina, Olga
    Muller-Wittig, Wolfgang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7921 - 7933
  • [22] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [23] Plug-and-Play Domain Adaptation for Cross-Subject EEG-based Emotion Recognition
    Zhao, Li-Ming
    Yan, Xu
    Lu, Bao-Liang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 863 - 870
  • [24] Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion
    Cimtay, Yucel
    Ekmekcioglu, Erhan
    Caglar-Ozhan, Seyma
    IEEE ACCESS, 2020, 8 : 168865 - 168878
  • [25] Cross-subject EEG emotion recognition using multi-source domain manifold feature selection
    She, Qingshan
    Shi, Xinsheng
    Fang, Feng
    Ma, Yuliang
    Zhang, Yingchun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159
  • [26] Spatial-Temporal Constraint Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Hou, Bowen
    Shao, Shitong
    Huan, Wei
    Tian, Ye
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [27] Enhanced Subspace Alignment with Clustering and Weighting for Cross-Subject Multi-Session EEG-based Emotion Recognition
    Shirkarami, Mohsen
    Mohammadzade, Hoda
    2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 104 - 109
  • [28] Cross-Subject emotion recognition from EEG using Convolutional Neural Networks
    Zhong, Xiaolong
    Yin, Zhong
    Zhang, Jianhua
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7516 - 7521
  • [29] Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition
    Wang, Jing
    Ning, Xiaojun
    Xu, Wei
    Li, Yunze
    Jia, Ziyu
    Lin, Youfang
    NEURAL NETWORKS, 2024, 180
  • [30] EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition
    Zhou, Rushuang
    Ye, Weishan
    Zhang, Zhiguo
    Luo, Yanyang
    Zhang, Li
    Li, Linling
    Huang, Gan
    Dong, Yining
    Zhang, Yuan-Ting
    Liang, Zhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,