An ETD method for multi-asset American option pricing under jump-diffusion model

被引:1
|
作者
Company, Rafael [1 ]
Egorova, Vera N. [2 ]
Jodar, Lucas [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
[2] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, Santander, Spain
关键词
exponential time differencing; jump-diffusion model; multi-asset option pricing; multivariate Gauss-Hermite quadrature; partial-integro differential equation; FINITE-DIFFERENCE SCHEME; PENALTY METHOD; VALUATION;
D O I
10.1002/mma.9125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a numerical method for American multi-asset options under jump-diffusion model based on the combination of the exponential time differencing (ETD) technique for the differential operator and Gauss-Hermite quadrature for the integral term. In order to simplify the computational stencil and improve characteristics of the ETD-scheme mixed derivative eliminating transformation is applied. The results are compared with recently proposed methods.
引用
收藏
页码:10332 / 10347
页数:16
相关论文
共 50 条
  • [41] Pricing American exchange options in a jump-diffusion model
    Lindset, Snorre
    JOURNAL OF FUTURES MARKETS, 2007, 27 (03) : 257 - 273
  • [42] Analysis of a jump-diffusion option pricing model with serially correlated jump sizes
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Chao, Wan-Ling
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 953 - 979
  • [43] An Analytical Method for Multi-Asset Option Pricing Based on a Single-Factor Model
    Ye, Letian
    JOURNAL OF DERIVATIVES, 2016, 24 (01): : 7 - 16
  • [44] Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model
    Deng, Guohe
    COMPLEXITY, 2020, 2020
  • [45] Pricing European Option under Fractional Jump-diffusion Ornstein-Uhlenbeck Model
    Xue Hong
    Sun Yudong
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 164 - 169
  • [46] Pricing American Options by Willow Tree Method Under Jump-Diffusion Process
    Xu, Wei
    Yin, Yufang
    JOURNAL OF DERIVATIVES, 2014, 22 (01): : 46 - 56
  • [47] Option pricing under jump diffusion model
    Li, Qian
    Wang, Li
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [48] Option pricing under regime-switching jump-diffusion models
    Costabile, Massimo
    Leccadito, Arturo
    Massabo, Ivar
    Russo, Emilio
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 152 - 167
  • [49] Multi-asset option pricing using an information-based model
    Ikamari, Cynthia
    Ngare, Philip
    Weke, Patrick
    SCIENTIFIC AFRICAN, 2020, 10
  • [50] Option Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
    Makate, Nonthiya
    Sattayatham, Pairote
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 651 - 660