Scalable classifier-agnostic channel selection for multivariate time series classification

被引:9
|
作者
Dhariyal, Bhaskar [1 ]
Le Nguyen, Thach [1 ]
Ifrim, Georgiana [1 ]
机构
[1] Univ Coll Dublin, Insight Ctr Data Analyt, Sch Comp Sci, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
Multivariate time series; Channel selection; Scalability; Classification; STATISTICAL COMPARISONS;
D O I
10.1007/s10618-022-00909-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accuracy is a key focus of current work in time series classification. However, speed and data reduction are equally important in many applications, especially when the data scale and storage requirements rapidly increase. Current multivariate time series classification (MTSC) algorithms need hundreds of compute hours to complete training and prediction. This is due to the nature of multivariate time series data which grows with the number of time series, their length and the number of channels. In many applications, not all the channels are useful for the classification task, hence we require methods that can efficiently select useful channels and thus save computational resources. We propose and evaluate two methods for channel selection. Our techniques work by representing each class by a prototype time series and performing channel selection based on the prototype distance between classes. The main hypothesis is that useful channels enable better separation between classes; hence, channels with a larger distance between class prototypes are more useful. On the UEA MTSC benchmark, we show that these techniques achieve significant data reduction and classifier speedup for similar levels of classification accuracy. Channel selection is applied as a pre-processing step before training state-of-the-art MTSC algorithms and saves about 70% of computation time and data storage with preserved accuracy. Furthermore, our methods enable efficient classifiers, such as ROCKET, to achieve better accuracy than using no selection or greedy forward channel selection. To further study the impact of our techniques, we present experiments on classifying synthetic multivariate time series datasets with more than 100 channels, as well as a real-world case study on a dataset with 50 channels. In both cases, our channel selection methods result in significant data reduction with preserved or improved accuracy.
引用
收藏
页码:1010 / 1054
页数:45
相关论文
共 50 条
  • [21] Multilabel Classification With Multivariate Time Series Predictors
    Che, Yuezhang
    Zhu, Yunzhang
    Shen, Xiaotong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5696 - 5705
  • [22] Granger Causality for Multivariate Time Series Classification
    Yang, Dandan
    Chen, Huanhuan
    Song, Yinlong
    Gong, Zhichen
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 103 - 110
  • [23] Multivariate Time Series Classification: A Relational Way
    Gay, Dominique
    Bondu, Alexis
    Lemaire, Vincent
    Boulle, Marc
    Clerot, Fabrice
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2020), 2020, 12393 : 316 - 330
  • [24] Classification Based on Compressive Multivariate Time Series
    Utomo, Chandra
    Li, Xue
    Wang, Sen
    DATABASES THEORY AND APPLICATIONS, (ADC 2016), 2016, 9877 : 204 - 214
  • [25] A new metric for classification of multivariate time series
    Guan, Heshan
    Jiang, Qingshan
    Hong, Zhiling
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 453 - +
  • [26] Comparison and classification of stationary multivariate time series
    Maharaj, EA
    PATTERN RECOGNITION, 1999, 32 (07) : 1129 - 1138
  • [27] Scalable Multivariate Time-Series Models for Climate Informatics
    Liu, Yan
    COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (06) : 19 - 26
  • [28] Scalable Multivariate Time-Series Models for Climate Informatics
    University of Southern California, Los Angeles, United States
    Comput. Sci. Eng., 6 (19-26):
  • [29] A Scalable Segmented Dynamic Time Warping for Time Series Classification
    Ma, Ruizhe
    Ahmadzadeh, Azim
    Boubrahimi, Soukaina Filali
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2019, PT II, 2019, 11509 : 407 - 419
  • [30] Shapelet selection for time series classification
    Ji, Cun
    Wei, Yanxuan
    Zheng, Xiangwei
    APPLIED SOFT COMPUTING, 2024, 167