Financial Default Prediction via Motif-preserving Graph Neural Network with Curriculum Learning

被引:4
|
作者
Wang, Daixin [1 ]
Zhang, Zhiqiang [1 ]
Zhao, Yeyu [1 ]
Huang, Kai [1 ]
Kang, Yulin [1 ]
Zhou, Jun [1 ]
机构
[1] Ant Grp, Hangzhou, Peoples R China
关键词
Default Prediction; Graph Neural Network; Network Motif; FRAUD; INFORMATION;
D O I
10.1145/3580305.3599351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
User financial default prediction plays a critical role in credit risk forecasting and management. It aims at predicting the probability that the user will fail to make the repayments in the future. Previous methods mainly extract a set of user individual features regarding his own profiles and behaviors and build a binary-classification model to make default predictions. However, these methods cannot get satisfied results, especially for users with limited information. Although recent efforts suggest that default prediction can be improved by social relations, they fail to capture the higher-order topology structure at the level of small subgraph patterns. In this paper, we fill in this gap by proposing a motif-preserving Graph Neural Network with curriculum learning (MotifGNN) to jointly learn the lower-order structures from the original graph and higher-order structures from multi-view motif-based graphs for financial default prediction. Specifically, to solve the problem of weak connectivity in motif-based graphs, we design the motif-based gating mechanism. It utilizes the information learned from the original graph with good connectivity to strengthen the learning of the higher-order structure. And considering that the motif patterns of different samples are highly unbalanced, we propose a curriculum learning mechanism on the whole learning process to more focus on the samples with uncommon motif distributions. Extensive experiments on one public dataset and two industrial datasets all demonstrate the effectiveness of our proposed method.
引用
收藏
页码:2233 / 2242
页数:10
相关论文
共 50 条
  • [21] Motif-Aware Riemannian Graph Neural Network with Generative-Contrastive Learning
    Sun, Li
    Huang, Zhenhao
    Wang, Zixi
    Wang, Feiyang
    Peng, Hao
    Yu, Philip
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9044 - 9052
  • [22] Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network
    Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing University of Technology, Beijing
    100124, China
    不详
    266011, China
    不详
    100083, China
    J Adv Transp, 2022,
  • [23] Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network
    Wang, Shun
    Lv, Yimei
    Peng, Yuan
    Piao, Xinglin
    Zhang, Yong
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [24] Towards explaining graph neural networks via preserving prediction ranking and structural dependency
    Zhang, Youmin
    Cheung, William K.
    Liu, Qun
    Wang, Guoyin
    Yang, Lili
    Liu, Li
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (02)
  • [25] Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data
    Zhang K.
    Cai Z.
    Seo D.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [26] Traffic Flow Prediction via Spatial Temporal Graph Neural Network
    Wang, Xiaoyang
    Ma, Yao
    Wang, Yiqi
    Jin, Wei
    Wang, Xin
    Tang, Jiliang
    Jia, Caiyan
    Yu, Jian
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1082 - 1092
  • [27] Financial transaction fraud detector based on imbalance learning and graph neural network
    Tong, Guoxiang
    Shen, Jieyu
    APPLIED SOFT COMPUTING, 2023, 149
  • [28] Runtime Performance Prediction for Deep Learning Models with Graph Neural Network
    Gao, Yanjie
    Gu, Xianyu
    Zhang, Hongyu
    Lin, Haoxiang
    Yang, Mao
    2023 IEEE/ACM 45TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE, ICSE-SEIP, 2023, : 368 - 380
  • [29] Dynamic Graph Neural Network Learning for Temporal Omics Data Prediction
    Jing, Xiaoli
    Zhou, Yanhong
    Shi, Min
    IEEE ACCESS, 2022, 10 : 116241 - 116252
  • [30] Reverse Graph Learning for Graph Neural Network
    Peng, Liang
    Hu, Rongyao
    Kong, Fei
    Gan, Jiangzhang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4530 - 4541