On the (1+4)-body problem with J2 potential

被引:0
|
作者
Gauthier, Ryan [1 ]
Stoica, Cristina [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
n-body problem; Square homographic motions; Saddle-node bifurcation; J(2) perturbation; Relative equilibria; Stability; 4-BODY PROBLEM; STABILITY; SURFACES;
D O I
10.1007/s10509-023-04227-w
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the (1 + 4)-body problem with a Newtonian potential augmented by a "J(2)" inverse-cubic perturbation. We describe the square-shaped homographic motions, and we find a saddle-centre bifurcation of the rotating equilibria (RE). Further, we prove that for a sufficiently small perturbation, all square-shaped RE are unstable.
引用
收藏
页数:10
相关论文
共 50 条