Non-line-of-sight Imaging with Signal Superresolution Network

被引:9
|
作者
Wang, Jianyu [1 ]
Liu, Xintong [1 ]
Xiao, Leping [1 ]
Shi, Zuoqiang [1 ,2 ]
Qiu, Lingyun [1 ,2 ]
Fu, Xing [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.01671
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-line-of-sight (NLOS) imaging aims at reconstructing the location, shape, albedo, and surface normal of the hidden object around the corner with measured transient data. Due to its strong potential in various fields, it has drawn much attention in recent years. However, long exposure time is not always available for applications such as auto-driving, which hinders the practical use of NLOS imaging. Although scanning fewer points can reduce the total measurement time, it also brings the problem of imaging quality degradation. This paper proposes a general learning-based pipeline for increasing imaging quality with only a few scanning points. We tailor a neural network to learn the operator that recovers a high spatial resolution signal. Experiments on synthetic and measured data indicate that the proposed method provides faithful reconstructions of the hidden scene under both confocal and non-confocal settings. Compared with original measurements, the acquisition of our approach is 16 times faster while maintaining similar reconstruction quality. Besides, the proposed pipeline can be applied directly to existing optical systems and imaging algorithms as a plug-in-and-play module. We believe the proposed pipeline is powerful in increasing the frame rate in NLOS video imaging.
引用
收藏
页码:17420 / 17429
页数:10
相关论文
共 50 条
  • [21] Real-time Non-line-of-sight Imaging
    O'Toole, Matthew
    Lindell, David B.
    Wetzstein, Gordon
    SIGGRAPH'18: ACM SIGGRAPH 2018 EMERGING TECHNOLOGIES, 2018,
  • [22] Non-Line-of-Sight Imaging Through Deep Learning
    Yu T.
    Qiao M.
    Liu H.
    Han S.
    Guangxue Xuebao/Acta Optica Sinica, 2019, 39 (07):
  • [23] Non-Line-of-Sight Imaging Through Deep Learning
    Yu Tingyi
    Qiao Mu
    Liu Honglin
    Han Shensheng
    ACTA OPTICA SINICA, 2019, 39 (07)
  • [24] Compressive Non-Line-of-Sight Imaging with Deep Learning
    Zhu, Shenyu
    Sua, Yong Meng
    Bu, Ting
    Huang, Yu -Ping
    PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [25] Exploiting Occlusion in Non-Line-of-Sight Active Imaging
    Thrampoulidis, Christos
    Shulkind, Gal
    Xu, Feihu
    Freeman, William T.
    Shapiro, Jeffrey H.
    Torralba, Antonio
    Wong, Franco N. C.
    Wornell, Gregory W.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03): : 419 - 431
  • [26] Calibration scheme for non-line-of-sight imaging setups
    Klein, Jonathan
    Laurenzis, Martin
    Hullin, Matthias B.
    Iseringhausen, Julian
    OPTICS EXPRESS, 2020, 28 (19): : 28324 - 28342
  • [27] Non-Line-of-Sight Imaging with Picosecond Temporal Resolution
    Wang, Bin
    Zheng, Ming-Yang
    Han, Jin-Jian
    Huang, Xin
    Xie, Xiu-Ping
    Xu, Feihu
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2021, 127 (05)
  • [28] Deep Non-Line-of-Sight Imaging Using Echolocation
    Jang, Seungwoo
    Shin, Ui-Hyeon
    Kim, Kwangsu
    SENSORS, 2022, 22 (21)
  • [29] Non-line-of-sight imaging over 1.43 km
    Wu, Cheng
    Liu, Jianjiang
    Huang, Xin
    Li, Zheng-Ping
    Yu, Chao
    Ye, Jun-Tian
    Zhang, Jun
    Zhang, Qiang
    Dou, Xiankang
    Goyal, Vivek K.
    Xu, Feihu
    Pan, Jian-Wei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [30] Non-line-of-sight imaging with adaptive artifact cancellation
    Zhou, Hongyuan
    Chen, Ziyang
    Qiu, Jumin
    Zhong, Sijia
    Zhang, Dejian
    Wang, Tongbiao
    Liu, Qiegen
    Yu, Tianbao
    OPTICS AND LASER TECHNOLOGY, 2025, 182