Multi-round QAOA and advanced mixers on a trapped-ion quantum computer

被引:8
|
作者
Zhu, Yingyue [1 ,2 ]
Zhang, Zewen [3 ]
Sundar, Bhuvanesh [4 ,5 ]
Green, Alaina M. [1 ,2 ]
Alderete, C. Huerta [1 ,2 ]
Nguyen, Nhung H. [1 ,2 ]
Hazzard, Kaden R. A. [3 ,6 ]
Linke, Norbert M. [1 ,2 ,7 ,8 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20740 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20740 USA
[3] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[4] Univ Colorado, Dept Phys, JILA, Boulder, CO 80309 USA
[5] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[6] Rice Univ, Rice Ctr Quantum Mat, Houston, TX 77005 USA
[7] Duke Univ, Duke Quantum Ctr, Durham, NC 27708 USA
[8] Duke Univ, Dept Phys, Durham, NC 27708 USA
关键词
QAOA; hybrid quantum algorithm; optimization problems; trapped-ion quantum computing; Grover mixer; fair sampling; graph problems; OPTIMIZATION;
D O I
10.1088/2058-9565/ac91ef
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Combinatorial optimization problems on graphs have broad applications in science and engineering. The quantum approximate optimization algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits. However, there exist several challenges limiting the application of QAOA to real-world problems. In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs. We also demonstrate an advanced mixing Hamiltonian that allows sampling of all optimal solutions with predetermined weights. Our results are a step toward applying quantum algorithms to real-world problems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator
    Hempel, Cornelius
    Maier, Christine
    Romero, Jonathan
    McClean, Jarrod
    Monz, Thomas
    Shen, Heng
    Jurcevic, Petar
    Lanyon, Ben P.
    Love, Peter
    Babbush, Ryan
    Aspuru-Guzik, Alan
    Blatt, Rainer
    Roos, Christian F.
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [42] Trapped-ion antennae for the transmission of quantum information
    M. Harlander
    R. Lechner
    M. Brownnutt
    R. Blatt
    W. Hänsel
    Nature, 2011, 471 : 200 - 203
  • [43] The Impact of the Sun on Trapped-Ion Quantum Computers
    Mills, Michael
    Sedlacek, Jonathan
    Peterson, Tim
    Campbell, Sara
    Johansen, Jacob
    Dreiling, Joan
    Francois, David
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 879 - 881
  • [44] Materials challenges for trapped-ion quantum computers
    Kenneth R. Brown
    John Chiaverini
    Jeremy M. Sage
    Hartmut Häffner
    Nature Reviews Materials, 2021, 6 : 892 - 905
  • [45] Probabilistic eigensolver with a trapped-ion quantum processor
    Zhang, Jing-Ning
    Arrazola, Inigo
    Casanova, Jorge
    Lamata, Lucas
    Kim, Kihwan
    Solano, Enrique
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [46] Technologies for trapped-ion quantum information systems
    Eltony, Amira M.
    Gangloff, Dorian
    Shi, Molu
    Bylinskii, Alexei
    Vuletic, Vladan
    Chuang, Isaac L.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5351 - 5383
  • [47] Quantum synchronization of a single trapped-ion qubit
    Zhang, Liyun
    Wang, Zhao
    Wang, Yucheng
    Zhang, Junhua
    Wu, Zhigang
    Jie, Jianwen
    Lu, Yao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [48] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [49] Trapped-ion antennae for the transmission of quantum information
    Harlander, M.
    Lechner, R.
    Brownnutt, M.
    Blatt, R.
    Haensel, W.
    NATURE, 2011, 471 (7337) : 200 - 203
  • [50] Trapped-ion based nanoscale quantum sensing
    Yoo, Jieun
    Kim, Hyunsoo
    Kim, Hyerin
    Kim, Yeongseo
    Choi, Taeyoung
    NANO CONVERGENCE, 2025, 12 (01):