Deep learning-based image analysis for in situ microscopic imaging of cell culture process

被引:6
|
作者
Wang, Xiaoli [1 ]
Zhou, Guangzheng [1 ]
Liang, Lipeng [1 ]
Liu, Yuan [1 ]
Luo, An [1 ]
Wen, Zhenguo [1 ]
Wang, Xue Zhong [1 ]
机构
[1] Beijing Inst Petrochem Technol, Coll New Mat & Chem Engn, Beijing Key Lab Enze Biomass Fine Chem, Beijing 102617, Peoples R China
基金
中国国家自然科学基金;
关键词
Cell culture; On-line monitoring; In situ microscope; Image analysis; Deep learning; PROCESS ANALYTICAL TECHNOLOGY; PAT;
D O I
10.1016/j.engappai.2023.107621
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mammalian cell culture is an important bioprocess that directly affects the quality and yield of biopharmaceuticals. Traditionally, condition monitoring of the operation is based on sampling periodically and offline analysis, which is labor intensive, time consuming, and causing time delays. In this work, in situ microscope is investigated for on-line real-time monitoring of the culture process of Chinese hamster ovary cells with focus on investigation of deep learning-based Mask R-CNN algorithm for image analysis. The model is trained by 184 images with 183,040 cells using data augmentation methods and transfer learning technique. Mask R-CNN segmented the clustered cells more effectively than the conventional one combining edge detection, intensity thresholding, and advanced watershed method as well as the multi-scale edge detection method. Its Dice score, accuracy, precision, sensitivity, F1 score, specificity, and relative volume difference reach 0.862, 0.945, 0.901, 0.827, 0.862, 0.977, and 0.082, respectively. The evolution of geometrical features of cells were further analyzed, including equivalent diameter, circularity, aspect ratio, and eccentricity. The result demonstrated the great potential of deep learning technology in analysis of on-line images for optimization and control of the cell culture process.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep learning-based spam image filtering
    Salama, Wessam M.
    Aly, Moustafa H.
    Abouelseoud, Yasmine
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 68 : 461 - 468
  • [32] Deep learning-based framework for slide-based histopathological image analysis
    Kosaraju, Sai
    Park, Jeongyeon
    Lee, Hyun
    Yang, Jung Wook
    Kang, Mingon
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [33] Deep learning-based fundus image analysis for cardiovascular disease: a review
    Chikumba, Symon
    Hu, Yuqian
    Luo, Jing
    THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2023, 14
  • [34] Deep learning-based automated image segmentation for concrete petrographic analysis
    Song, Yu
    Huang, Zilong
    Shen, Chuanyue
    Shi, Humphrey
    Lange, David A.
    CEMENT AND CONCRETE RESEARCH, 2020, 135 (135)
  • [35] Deep Learning-Based Rainfall Prediction Using Cloud Image Analysis
    Byun, Jongyun
    Jun, Changhyun
    Kim, Jinwon
    Cha, Jaehoon
    Narimani, Roya
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [36] Assessment of deep learning-based image analysis for disaster waste identification
    Zhang, Yuan -Long
    Kim, Young -Chan
    Cha, Gi-Wook
    JOURNAL OF CLEANER PRODUCTION, 2023, 428
  • [37] Performance Analysis of Different Optimizers for Deep Learning-Based Image Recognition
    Postalcioglu, Seda
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (02)
  • [38] Deep Learning-Based Image Analysis of Liver Steatosis in Mouse Models
    Mairinoja, Laura
    Heikela, Hanna
    Blom, Sami
    Kumar, Darshan
    Knuuttila, Anna
    Boyd, Sonja
    Sjoblom, Nelli
    Birkman, Eva-Maria
    Rinne, Petteri
    Ruusuvuori, Pekka
    Strauss, Leena
    Poutanen, Matti
    AMERICAN JOURNAL OF PATHOLOGY, 2023, 193 (08): : 1072 - 1080
  • [39] Deep learning-based multimodal image analysis for cervical cancer detection
    Ming, Yue
    Dong, Xiying
    Zhao, Jihuai
    Chen, Zefu
    Wang, Hao
    Wu, Nan
    METHODS, 2022, 205 : 46 - 52
  • [40] Deep learning-based imaging in radio interferometry
    Schmidt, K.
    Geyer, F.
    Froese, S.
    Blomenkamp, P-S
    Brueggen, M.
    de Gasperin, F.
    Elsaesser, D.
    Rhode, W.
    ASTRONOMY & ASTROPHYSICS, 2022, 664