Weakly Supervised Few-Shot Segmentation via Meta-Learning

被引:11
|
作者
Gama, Pedro H. T. [1 ]
Oliveira, Hugo [2 ]
Marcato Jr, Jose [3 ]
dos Santos, Jefersson A. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, BR-31270901 Belo Horizonte, Brazil
[2] Univ Sao, Inst Math & Stat IME, BR-05508060 Sao Paulo, Brazil
[3] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, BR-79070900 Campo Grande, MS, Brazil
基金
巴西圣保罗研究基金会;
关键词
Image segmentation; Task analysis; Semantics; Annotations; Prototypes; Biomedical imaging; Training; Agriculture; few-shot; medical imaging analysis; meta learning; remote sensing; semantic segmentation; weakly supervised; IMAGES;
D O I
10.1109/TMM.2022.3162951
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation is a classic computer vision task with multiple applications, which includes medical and remote sensing image analysis. Despite recent advances with deep-based approaches, labeling samples (pixels) for training models is laborious and, in some cases, unfeasible. In this paper, we present two novel meta-learning methods, named WeaSeL and ProtoSeg, for the few-shot semantic segmentation task with sparse annotations. We conducted an extensive evaluation of the proposed methods in different applications (12 datasets) in medical imaging and agricultural remote sensing, which are very distinct fields of knowledge and usually subject to data scarcity. The results demonstrated the potential of our method, achieving suitable results for segmenting both coffee/orange crops and anatomical parts of the human body in comparison with full dense annotation.
引用
收藏
页码:1784 / 1797
页数:14
相关论文
共 50 条
  • [31] Semi-supervised Few-shot Network Intrusion Detection based on Meta-learning
    Liu, Yao
    Zhou, Le
    Liu, Qiao
    Lan, Tian
    Bai, Xiaoyu
    Zhou, Tinghao
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 495 - 502
  • [32] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [33] Meta-learning for few-shot time series forecasting
    Xiao, Feng
    Liu, Lu
    Han, Jiayu
    Guo, Degui
    Wang, Shang
    Cui, Hai
    Peng, Tao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 325 - 341
  • [34] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [35] Contrastive Meta-Learning for Few-shot Node Classification
    Wang, Song
    Tan, Zhen
    Liu, Huan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2386 - 2397
  • [36] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [37] Decomposed Meta-Learning for Few-Shot Sequence Labeling
    Ma, Tingting
    Wu, Qianhui
    Jiang, Huiqiang
    Lin, Jieru
    Karlsson, Borje F.
    Zhao, Tiejun
    Lin, Chin-Yew
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 1980 - 1993
  • [38] Meta-Learning for Few-Shot Plant Disease Detection
    Chen, Liangzhe
    Cui, Xiaohui
    Li, Wei
    FOODS, 2021, 10 (10)
  • [39] Meta-Learning for Few-Shot Named Entity Recognition
    de Lichy, Cyprien
    Glaude, Hadrien
    Campbell, William
    1ST WORKSHOP ON META LEARNING AND ITS APPLICATIONS TO NATURAL LANGUAGE PROCESSING (METANLP 2021), 2021, : 44 - 58
  • [40] Meta-Learning for Few-Shot Time Series Classification
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    Vishnu, T. V.
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 28 - 36