Design of a Digital LAMP Detection Platform Based on Droplet Microfluidic Technology

被引:4
|
作者
Jiang, Liying [1 ,2 ]
Lan, Xianghao [1 ]
Ren, Linjiao [1 ]
Yang, Mingzhu [3 ]
Wei, Bo [4 ]
Wang, Yang [5 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Acad Quantum Sci & Technol, Zhengzhou 450002, Peoples R China
[3] Beijing Res Inst Mech Equipment, Beijing 100143, Peoples R China
[4] Capital Med Univ, Beijing Tiantan Hosp, Dept Thorac Surg, Beijing 100070, Peoples R China
[5] Beihang Univ, Sch Engn Med, Beijing Adv Innovat Ctr Biomed Engn, Key Lab Biomech & Mechanobiol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
microfluidic; droplet generation; digital-LAMP; high sensitivity; ISOTHERMAL AMPLIFICATION LAMP; DIAGNOSIS; CHIP; PCR;
D O I
10.3390/mi14051077
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Loop-mediated isothermal amplification (LAMP) is a rapid and high-yield amplification technology for specific DNA or RNA molecules. In this study, we designed a digital loop-mediated isothermal amplification (digital-LAMP)-functioning microfluidic chip to achieve higher sensitivity for detection of nucleic acids. The chip could generate droplets and collect them, based on which we could perform Digital-LAMP. The reaction only took 40 min at a constant temperature of 63 degrees C. The chip enabled highly accurate quantitative detection, with the limit of detection (LOD) down to 10(2) copies mu L-1. For better performance while reducing the investment of money and time in chip structure iterations, we used COMSOL Multiphysics to simulate different droplet generation ways by including flow-focusing structure and T-junction structure. Moreover, the linear structure, serpentine structure, and spiral structure in the microfluidic chip were compared to study the fluid velocity and pressure distribution. The simulations provided a basis for chip structure design while facilitating chip structure optimization. The digital-LAMP-functioning chip proposed in the work provides a universal platform for analysis of viruses.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform
    Lee, Hun
    Xu, Linfeng
    Ahn, Byungwook
    Lee, Kangsun
    Oh, Kwang W.
    MICROFLUIDICS AND NANOFLUIDICS, 2012, 13 (04) : 613 - 623
  • [42] Voltage Driven Electrowetting based Microfluidic Operations for Efficient Droplet Routing in Digital Microfluidic Biochips
    Pan, Indrajit
    Samanta, Tuhina
    2014 IEEE/ASME 10TH INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2014), 2014,
  • [43] Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform
    Hun Lee
    Linfeng Xu
    Byungwook Ahn
    Kangsun Lee
    Kwang W. Oh
    Microfluidics and Nanofluidics, 2012, 13 : 613 - 623
  • [44] Reinforcement Learning based Droplet Routing Algorithm for Digital Microfluidic Biochips
    Rajesh, Kolluri
    Tirkey, Anand
    Sarkar, Anirban
    Pyne, Sumanta
    2020 24TH INTERNATIONAL SYMPOSIUM ON VLSI DESIGN AND TEST (VDAT), 2020,
  • [45] A Flooding-Based Droplet Routing Protocol for Digital Microfluidic Biochip
    Swain, Jyotiranjan
    Pyne, Sumanta
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (17)
  • [46] Digital Microfluidic Droplet Path Planning Based on Improved Genetic Algorithm
    Luo, Zhijie
    Long, Wufa
    Chen, Rui
    Wu, Jianhao
    Huang, Aiqing
    Zheng, Jianhua
    INFORMATION, 2025, 16 (02)
  • [47] Capacitance-based droplet position estimator for digital microfluidic devices
    Murran, Miguel Angel
    Najjaran, Homayoun
    LAB ON A CHIP, 2012, 12 (11) : 2053 - 2059
  • [48] Ultrasensitive detection of lysozyme in droplet-based microfluidic devices
    Giuffrida, Maria Chiara
    Cigliana, Giovanni
    Spoto, Giuseppe
    BIOSENSORS & BIOELECTRONICS, 2018, 104 : 8 - 14
  • [49] Optical detection for droplet size control in microfluidic droplet-based analysis systems
    Nguyen, Narn-Trung
    Lassemono, Surnantri
    Chollet, Franck Alexis
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (02) : 431 - 436
  • [50] Optical detection for droplet size control in microfluidic droplet-based analysis systems
    Nguyen, NT
    Lassemono, S
    Chollet, FA
    Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005, : 1557 - 1560