An efficient evolutionary algorithm based on deep reinforcement learning for large-scale sparse multiobjective optimization
被引:7
|
作者:
Gao, Mengqi
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Shanghai Engn Res Ctr Smart Energy, Shanghai, Peoples R ChinaEast China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Gao, Mengqi
[1
,2
]
Feng, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Shanghai Engn Res Ctr Smart Energy, Shanghai, Peoples R ChinaEast China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Feng, Xiang
[1
,2
]
Yu, Huiqun
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Shanghai Engn Res Ctr Smart Energy, Shanghai, Peoples R ChinaEast China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Yu, Huiqun
[1
,2
]
Li, Xiuquan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci & Technol Dev, Beijing 100038, Peoples R ChinaEast China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
Li, Xiuquan
[3
]
机构:
[1] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
[2] Shanghai Engn Res Ctr Smart Energy, Shanghai, Peoples R China
[3] Chinese Acad Sci & Technol Dev, Beijing 100038, Peoples R China
Large-scale sparse multiobjective optimization problems (SMOPs) widely exist in academic research and engineering applications. The curse of dimensionality and the fact that most decision variables take zero values make optimization very difficult. Sparse features are common to many practical complex problems currently, and using sparse features as a breakthrough point can enable many large-scale complex problems to be solved. We propose an efficient evolutionary algorithm based on deep reinforcement learning to solve large-scale SMOPs. Deep reinforcement learning networks are used for mining sparse variables to reduce the problem dimensionality, which is a challenge for large-scale multiobjective optimization. Then the three-way decision concept is used to optimize decision variables. The emphasis is on optimizing deterministic nonzero variables and continuously mining uncertain decision variables. Experimental results on sparse benchmark problems and real-world application problems show that the proposed algorithm performs well on SMOPs while being highly efficient.
机构:
Anqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R ChinaAnqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
Jiang, Jing
Han, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
Jiangsu Key Lab Secur Technol Ind Cyberspace, Zhenjiang 212013, Jiangsu, Peoples R ChinaAnqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
Han, Fei
Wang, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R ChinaAnqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
Wang, Jie
Ling, Qinghua
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Sci & Technol, Sch Comp Sci, Zhenjiang 212003, Jiangsu, Peoples R ChinaAnqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
Ling, Qinghua
Han, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Fordham Univ, Dept Comp & Informat Sci, New York, NY USAAnqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
Han, Henry
Wang, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R ChinaAnqing Normal Univ, Key Lab Intelligent Percept & Comp Anhui Prov, Anqing 246133, Anhui, Peoples R China
机构:
East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
East China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaSouthern Univ Sci & Technol, Univ Key Lab Evolving Intelligent Syst Guangdong, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Liu, Songbai
Li, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Li, Jun
论文数: 引用数:
h-index:
机构:
Lin, Qiuzhen
Tian, Ye
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Inst Phys Sci & Informat Technol, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Tian, Ye
Tan, Kay Chen
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China