Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm

被引:7
|
作者
Fahmy, Hend M. [1 ]
Sweif, Rania A. [1 ]
Hasanien, Hany M. [1 ,2 ]
Tostado-Veliz, Marcos [3 ]
Alharbi, Mohammed [4 ]
Jurado, Francisco [3 ]
机构
[1] Ain Shams Univ, Fac Engn, Elect Power & Machines Dept, Cairo 11517, Egypt
[2] Future Univ Egypt, Fac Engn & Technol, Cairo 11835, Egypt
[3] Univ Jaen, Super Polytech Sch Linares, Dept Elect Engn, Linares 23700, Spain
[4] King Saud Univ, Coll Engn, Elect Engn Dept, Riyadh 11421, Saudi Arabia
关键词
lithium-ion battery; battery management system; integral square error; state of charge; battery modeling; parameter estimation; African vultures optimizer; ELECTRIC VEHICLES; CHARGE ESTIMATION; STATE; SYSTEMS; HEALTH;
D O I
10.3390/math11092215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes a study for an accurate parameter modeling method for lithium-ion batteries. A precise state space model generated from an equivalent electric circuit is used to carry out the proposed identification process, where parameter identification is a nonlinear optimization process problem. The African vultures optimization algorithm (AVOA) is utilized to solve this problem by simulating African vultures' foraging and navigating habits. The AVOA is used to implement this strategy and improve the quality of the solutions. Four scenarios are considered to take the effect of loading, fading, and dynamic analyses. The fitness function is selected as the integral square error between the estimated and measured voltage in these scenarios. Numerical simulations were executed on a 2600 mAhr Panasonic Li-ion battery to demonstrate the effectiveness of the suggested parameter identification technique. The proposed AVOA was fulfilled with high accuracy, the least error, and high closeness with the experimental data compared with different optimization algorithms, such as the Nelder-Mead simplex algorithm, the quasi-Newton algorithm, the Runge Kutta optimizer, the genetic algorithm, the grey wolf optimizer, and the gorilla troops optimizer. The proposed AVOA achieves the lowest fitness function level of the scenarios studied compared with relative optimization algorithms.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Fractional modeling and parameter identification of lithium-ion battery
    Zeyu Jiang
    Junhong Li
    Lei Li
    Juping Gu
    Ionics, 2022, 28 : 4135 - 4148
  • [22] Multiscale Parameter Identification Algorithm with Dynamic-tracking for Distributed Electric Model of Lithium-ion Battery
    Shen, Wenjing
    Zhang, Shupeng
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 356 - 361
  • [23] A Novel Adaptive Particle Swarm Optimization Algorithm Based High Precision Parameter Identification and State Estimation of Lithium-Ion Battery
    He, Mingfang
    Wang, Shunli
    Fernandez, Carlos
    Vu, Chunmei
    Li, Xiaoxia
    Bobobee, Etse Dablu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (05): : 1 - 20
  • [24] Dynamic Parameter Identification of Mathematical Model of Lithium-Ion Battery Based on Least Square Method
    Li, Rui
    Yu, Jialing
    Zhang, Yingchao
    Wang, Zican
    Lei, Yu
    He, Junqiang
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 1410 - 1414
  • [25] Lithium-Ion Battery Parameter Identification and State of Charge Estimation based on Equivalent Circuit Model
    Chang, Jiang
    Wei, Zhongbao
    He, Hongwen
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1490 - 1495
  • [26] Parameter Identification Method for Fractional-order Model of Lithium-ion Battery
    Guo, Dongxu
    Yang, Geng
    Zhou, Xing
    Lu, Languang
    Ouyang, Minggao
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 1415 - 1420
  • [27] Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network
    Chun, Huiyong
    Kim, Jungsoo
    Han, Soohee
    IFAC PAPERSONLINE, 2019, 52 (04): : 129 - 134
  • [28] Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence
    Chen, Long
    Xu, Ruyu
    Rao, Weining
    Li, Huanhuan
    Wang, Ya-Ping
    Yang, Tao
    Jiang, Hao-Bin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4124 - 4143
  • [29] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Yan Ma
    Jingpei Ru
    Mingyue Yin
    Hong Chen
    Weitao Zheng
    Journal of Applied Electrochemistry, 2016, 46 : 1119 - 1131
  • [30] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Ma, Yan
    Ru, Jingpei
    Yin, Mingyue
    Chen, Hong
    Zheng, Weitao
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (11) : 1119 - 1131