Photoluminescence properties of Cu-poor Cu2Sn1- x Ge x S3 thin films with varying Ge/(Ge plus Sn) ratio

被引:2
|
作者
Kanai, Ayaka [1 ]
Hata, Ryoma [1 ]
Sugiyama, Mutsumi [2 ]
Tanaka, Kunihiko [1 ]
机构
[1] Nagaoka Univ Technol, Dept Elect Elect & Informat Engn, 1603-1 Kamitomioka, Nagaoka, Niigata 9402188, Japan
[2] Tokyo Univ Sci, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
Cu2Sn1-x Ge (x) S-3; Cu2SnS3; thin film; photoluminescence; defect properties; absorber layer; SULFURIZATION; TEMPERATURE; BAND; NA; IMPROVEMENT; DEPENDENCE; ORIGIN; POINT; WATER;
D O I
10.1088/1361-6463/accc42
中图分类号
O59 [应用物理学];
学科分类号
摘要
This study investigates the photoluminescence (PL) spectra of Cu2Sn1-x Ge (x) S-3 (CTGS) thin films, which are currently the most suitable composition ratio for high-efficiency absorbers through low temperature-PL measurements to reveal the effects of the x ratio on defect properties of CTGS thin films. The PL spectrum of Cu2SnS3 (CTS) thin films with x= 0.00 exhibits five peaks at 0.782, 0.832, 0.862, 0.885, and 0.933 eV. Moreover, all PL peak positions in the CTGS thin films shift to higher energies with increasing x ratios because the defect levels in the films changed with an increase in the x ratio. Moreover, we obtain the estimated activation energy (E (a)) values of the CTS thin films with x = 0.00 ranging from 6 to 20 meV. The E (a) values of CTGS are similar to those of the CTGS thin films, even at x ratios of up to 0.19 in CTGS thin films. The increasing x ratio in CTGS thin films does not influence the acceptor in CTGS. Therefore, the CTGS is advantageous as an absorption layer in solar cells rather than a CTS because E (g) can be large while maintaining a shallow acceptor. Hence, CTGS can be expected to be increasingly used like CuIn1-x Ga (x) Se-2 and Cu2ZnSnS4 as next-generation absorption materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Valence band splitting in Cu2(Sn,Ge,Si)S3: Effect on optical absorption spectra
    de Wild, Jessica
    Kalesaki, Efterpi
    Wirtz, Ludger
    Dale, Phillip J.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (02):
  • [22] Magnetic properties of R3Cu4X4 (R = Gd-Er; X = Ge, Sn) compounds
    Szytula, A
    Wawrzynska, E
    Penc, B
    Stüsser, N
    Zygmunt, A
    PHYSICA B-CONDENSED MATTER, 2003, 327 (2-4) : 167 - 170
  • [23] Synthesis, theoretical and experimental characterisation of thin film Cu2Sn1-xGexS3 ternary alloys (x=0 to 1): Homogeneous intermixing of k for Sn and Ge
    Robert, Erika V. C.
    Gunder, Rene
    de Wild, Jessica
    Spindler, Conrad
    Babbe, Finn
    Elanzeery, Hossam
    El Adib, Brahime
    Treharne, Robert
    Miranda, Henrique P. C.
    Wirtz, Ludger
    Schorr, Susan
    Dale, Phillip J.
    ACTA MATERIALIA, 2018, 151 : 125 - 136
  • [24] Ce3Cu4X4(X=Sn,Ge)的晶场效应研究
    路莹
    湛江师范学院学报, 2008, 29 (06) : 20 - 23
  • [25] Antiferromagnetic properties of the intermetallics Ce3Ni2X7 (X=Ge or Sn)
    Chevalier, B
    Etourneau, J
    JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (08) : 1789 - 1792
  • [26] Synthesis and Photoelectrochemical Properties of (Cu2Sn)xZn3(1-x)S3 Nanocrystal Films
    Chen, Yubin
    Chuang, Chi-Hung
    Lin, Keng-Chu
    Shen, Shaohua
    McCleese, Christopher
    Guo, Liejin
    Burda, Clemens
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (22): : 11954 - 11963
  • [27] Electrical transport properties of Cu2Sn1-xGexS3 films with varying x ratios
    Kanai, Ayaka
    Ohashi, Ray
    Igarashi, Yuki
    Araki, Hideaki
    Tanaka, Kunihiko
    THIN SOLID FILMS, 2024, 803
  • [28] Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application
    Zhao, Wangen
    Pan, Daocheng
    Liu, Shengzhong
    NANOSCALE, 2016, 8 (19) : 10160 - 10165
  • [29] Magnetic properties of R3Cu4X4 (R = Tb-Er; X = Si, Ge, Sn) compounds
    Szytula, A.
    Wawrzynska, E.
    Zarzycki, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 442 (1-2) : 200 - 202
  • [30] EFFECT OF GeSe2 ON THE PREPARATION AND PROPERTIES OF Cu2Zn(Sn,Ge)(S,Se)4 FILMS
    Gao, C.
    Du, L.
    Teng, X.
    Yu, W.
    CHALCOGENIDE LETTERS, 2018, 15 (08): : 411 - 417