Aviation Rivet Classification and Anomaly Detection Based on Deep Learning

被引:1
|
作者
Zhu, Xiao-bo [1 ]
机构
[1] Flight Univ China, Sch Air Traff Management Civil Aviat, Guanghan 618307, Sichuan, Peoples R China
关键词
5G mobile communication systems - Aircraft - Anomaly detection - Classification (of information) - Learning algorithms;
D O I
10.1155/2023/3546838
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The shortage of personnel and the high cost have become a major pain point in the current safety supervision work of the inspectors. Aiming at the problem that the aircraft maintenance inspector could not visit the scene in person during the epidemic, a remote safety supervision platform was built based on intelligent glasses and 5G network, and the real-time monitoring of the aircraft skin rivet status was realized. And a method of aviation rivet classification and anomaly detection based on deep learning algorithm was proposed. Firstly, according to the appearance of rivet head, the aviation rivet is classified, the data set of aviation rivet is made, and the aviation rivet classification and anomaly detection model are constructed. Evaluate the detection results from such indicators as confidence, precision, recall rate, and mAP and compare the algorithm with the detection results of Yolox-s, Yolox-m, Yolov5-s, Yolov5-m, and Yolov4. The results show that (1) the algorithm proposed in this paper can realize the classification of aviation rivets and the detection of abnormal conditions, the confidence of the detection results is more than 90%, and the average precision, recall, and AP value are above 95%, 85%, and 88%, respectively. (2) The order of rivet classification and abnormal detection effect from good to bad is Philips screws, round head rivets, flat head rivets, countersunk head rivets, blind rivets, and abnormal condition. (3) Compared with other algorithms, the aviation rivet classification abnormal target detection based on deep learning has absolute advantages in accuracy and speed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] UDTL: Anomaly Detection Based on Unsupervised Deep Transfer Learning
    Wang, Xiang
    Wang, Yuanyu
    Dai, Yu
    Wei, Chi
    Tang, Yuliang
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2650 - 2655
  • [22] A survey of deep learning-based network anomaly detection
    Donghwoon Kwon
    Hyunjoo Kim
    Jinoh Kim
    Sang C. Suh
    Ikkyun Kim
    Kuinam J. Kim
    Cluster Computing, 2019, 22 : 949 - 961
  • [23] Deep Anomaly Detection with Ensemble-Based Active Learning
    Tang, Xuning
    Astle, Yihua Shi
    Freeman, Craig
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1663 - 1670
  • [24] Video Anomaly Detection Using Optimization Based Deep Learning
    Gayal, Baliram Sambhaji
    Patil, Sandip Raosaheb
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 249 - 264
  • [25] Review of Deep Learning-Based Video Anomaly Detection
    Ji G.
    Qi X.
    Wang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (02): : 128 - 143
  • [26] Anomaly Detection using Deep Learning based Image Completion
    Haselmann, M.
    Gruber, D. P.
    Tabatabai, P.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1237 - 1242
  • [27] A Deep Learning pipeline for Network Anomaly Detection based on Autoencoders
    Ferraro, Antonino
    Galli, Antonio
    La Gatta, Valerio
    Postiglione, Marco
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 260 - 264
  • [28] River Flooding Forecasting and Anomaly Detection Based on Deep Learning
    Miau, Scott
    Hung, Wei-Hsi
    IEEE ACCESS, 2020, 8 : 198384 - 198402
  • [29] Network Anomaly Intrusion Detection Based on Deep Learning Approach
    Wang, Yung-Chung
    Houng, Yi-Chun
    Chen, Han-Xuan
    Tseng, Shu-Ming
    SENSORS, 2023, 23 (04)
  • [30] Pulmonary DR Image Anomaly Detection Based on Deep Learning
    Song, Zhendong
    Fan, Lei
    Huang, Dong
    Feng, Xiaoyi
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 182 - 198