Unifying knowledge iterative dissemination and relational reconstruction network for image-text matching

被引:24
|
作者
Xie, Xiumin [1 ]
Li, Zhixin [1 ]
Tang, Zhenjun [1 ]
Yao, Dan [1 ]
Ma, Huifang [2 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
[2] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Image-text matching; Semantic knowledge; Similarity representation learning; Similarity-relation learning; Graph neural network; ATTENTION;
D O I
10.1016/j.ipm.2022.103154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image-text matching is a crucial branch in multimedia retrieval which relies on learning inter-modal correspondences. Most existing methods focus on global or local correspondence and fail to explore fine-grained global-local alignment. Moreover, the issue of how to infer more accurate similarity scores remains unresolved. In this study, we propose a novel unifying knowledge iterative dissemination and relational reconstruction (KIDRR) network for image-text matching. Particularly, the knowledge graph iterative dissemination module is designed to iteratively broadcast global semantic knowledge, enabling relevant nodes to be associated, resulting in fine-grained intra-modal correlations and features. Hence, vectorbased similarity representations are learned from multiple perspectives to model multi-level alignments comprehensively. The relation graph reconstruction module is further developed to enhance cross-modal correspondences by constructing similarity relation graphs and adaptively reconstructing them. We conducted experiments on the datasets Flickr30K and MSCOCO, which have 31,783 and 123,287 images, respectively. Experiments show that KIDRR achieves improvements of nearly 2.2% and 1.6% relative to Recall@1 on Flicr30K and MSCOCO, respectively, compared to the current state-of-the-art baselines.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Global-Guided Asymmetric Attention Network for Image-Text Matching
    Wu, Dongqing
    Li, Huihui
    Tang, Yinge
    Guo, Lei
    Liu, Hang
    NEUROCOMPUTING, 2022, 481 : 77 - 90
  • [22] Cross-modal Graph Matching Network for Image-text Retrieval
    Cheng, Yuhao
    Zhu, Xiaoguang
    Qian, Jiuchao
    Wen, Fei
    Liu, Peilin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [23] Step-Wise Hierarchical Alignment Network for Image-Text Matching
    Ji, Zhong
    Chen, Kexin
    Wang, Haoran
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 765 - 771
  • [24] Local Alignment with Global Semantic Consistence Network for Image-Text Matching
    Li, Pengwei
    Wu, Shihua
    Lian, Zhichao
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 652 - 657
  • [25] Multi-scale motivated neural network for image-text matching
    Xueyang Qin
    Lishuang Li
    Guangyao Pang
    Multimedia Tools and Applications, 2024, 83 : 4383 - 4407
  • [26] Cross-modal independent matching network for image-text retrieval
    Ke, Xiao
    Chen, Baitao
    Yang, Xiong
    Cai, Yuhang
    Liu, Hao
    Guo, Wenzhong
    PATTERN RECOGNITION, 2025, 159
  • [27] CycleMatch: A cycle-consistent embedding network for image-text matching
    Liu, Yu
    Guo, Yanming
    Liu, Li
    Bakker, Erwin M.
    Lew, Michael S.
    PATTERN RECOGNITION, 2019, 93 : 365 - 379
  • [28] Global-Guided Asymmetric Attention Network for Image-Text Matching
    Wu, Dongqing
    Li, Huihui
    Tang, Yinge
    Guo, Lei
    Liu, Hang
    Neurocomputing, 2022, 481 : 77 - 90
  • [29] Image-text interaction graph neural network for image-text sentiment analysis
    Wenxiong Liao
    Bi Zeng
    Jianqi Liu
    Pengfei Wei
    Jiongkun Fang
    Applied Intelligence, 2022, 52 : 11184 - 11198
  • [30] Image-text interaction graph neural network for image-text sentiment analysis
    Liao, Wenxiong
    Zeng, Bi
    Liu, Jianqi
    Wei, Pengfei
    Fang, Jiongkun
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11184 - 11198