Spectral-Spatial Generative Adversarial Network for Super-Resolution Land Cover Mapping With Multispectral Remotely Sensed Imagery

被引:4
|
作者
Shang, Cheng [1 ]
Jiang, Shan [1 ]
Ling, Feng [2 ]
Li, Xiaodong [2 ]
Zhou, Yadong [2 ]
Du, Yun [2 ]
机构
[1] Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Key Lab Monitoring & Estimate Environm & Disaster, Wuhan 430077, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning (DL); generative adversarial network (GAN); land cover fractions; spectral-spatial errors; super-resolution mapping (SRM); MARKOV RANDOM-FIELD; FOREST COVER; MODIS; WATERLINE; CLASSIFICATION; SCALE;
D O I
10.1109/JSTARS.2022.3228741
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super-resolution mapping (SRM) can effectively predict the spatial distribution of land cover classes within mixed pixels at a higher spatial resolution than the original remotely sensed imagery. The uncertainty of land cover fraction errors within mixed pixels is one of the most important factors affecting SRM accuracy. Studies have shown that SRM methods using deep learning techniques have significantly improved land cover mapping accuracy but have not coped well with spectral-spatial errors. This study proposes an end-to-end SRM model using a spectral-spatial generative adversarial network (SGS) with the direct input of multispectral remotely sensed imagery, which deals with spectral-spatial error. The proposed SGS comprises the following three parts: first, cube-based convolution for spectral unmixing is adopted to generate land cover fraction images. Second, a residual-in-residual dense block fully and jointly considers spectral and spatial information and reduces spectral errors. Third, a relativistic average GAN is designed as a backbone to further improve the super-resolution performance and reduce spectral-spatial errors. SGS was tested in one synthetic and two realistic experiments with multi/hyperspectral remotely sensed imagery as the input, comparing the results with those of hard classification and several classic SRM methods. The results showed that SGS performed well at reducing land cover fraction errors, reconstructing spatial details, removing unpleasant and unrealistic land cover artifacts, and eliminating false recognition.
引用
收藏
页码:522 / 537
页数:16
相关论文
共 50 条
  • [41] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [42] Enhanced Discriminative Generative Adversarial Network for Face Super-Resolution
    Yang, Xi
    Lu, Tao
    Wang, Jiaming
    Zhang, Yanduo
    Wu, Yuntao
    Wang, Zhongyuan
    Xiong, Zixiang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 441 - 452
  • [43] Superresolution Land Cover Mapping Using a Generative Adversarial Network
    Shang, Cheng
    Li, Xiaodong
    Foody, Giles M.
    Du, Yun
    Ling, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [44] Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network
    Chen, Wenjing
    Zheng, Xiangtao
    Lu, Xiaoqiang
    REMOTE SENSING, 2021, 13 (07)
  • [45] A multiresolution mixture generative adversarial network for video super-resolution
    Tian, Zhiqiang
    Wang, Yudiao
    Du, Shaoyi
    Lan, Xuguang
    PLOS ONE, 2020, 15 (07):
  • [46] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [47] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [48] Super-Resolution Based on Generative Adversarial Network for HRTEM Images
    Mao, Fuqi
    Guan, Xiaohan
    Wang, Ruoyu
    Yue, Wen
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (10)
  • [49] EESRGAN: Efficient & Effective Super-Resolution Generative Adversarial Network
    Tsai, An-Chao
    Tsou, Cheng-Han
    Wang, Jhing-Fa
    IETE TECHNICAL REVIEW, 2024, 41 (02) : 200 - 211
  • [50] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342