Building large k-cores from sparse graphs*,**

被引:0
|
作者
Fomin, Fedor, V [1 ]
Sagunov, Danil [2 ]
Simonov, Kirill [3 ]
机构
[1] Univ Bergen, Dept Informat, Thormohlens Gate 55, N-5008 Bergen, Norway
[2] VA Steklov Inst Math, St Petersburg Dept, Fontanka River Embankment 27, St Petersburg 191011, Russia
[3] Univ Potsdam, Hasso Plattner Inst, Prof Dr Helmert Str 2-3, D-14482 Potsdam, Germany
关键词
Parameterized complexity; k-Core; Vertex cover; Treewidth; INTERNET; THEOREM; NUMBER; GRAPH;
D O I
10.1016/j.jcss.2022.10.002
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A k-core of a graph G is the maximal induced subgraph in which every vertex has degree at least k. In the EDGE k-CORE optimization problem, we are given a graph G and integers k, b and p. The task is to ensure that the k-core of G has at least p vertices, by adding at most b edges. While EDGE k-CORE is known to be computationally hard in general, we show that there are efficient algorithms when the k-core has to be constructed from a sparse graph with some structural properties. Our results are as follows.center dot When the input graph is a forest, EDGE k-CORE is solvable in polynomial time.center dot EDGE k-CORE is fixed-parameter tractable (FPT) when parameterized by the minimum size of a vertex cover in the input graph.center dot EDGE k-CORE is FPT when parameterized by the treewidth of the graph plus k.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:68 / 88
页数:21
相关论文
共 50 条
  • [21] GENERALIZED FROBENIUS PARTITIONS, K-CORES, K-QUOTIENTS, AND CRANKS
    KOLITSCH, LW
    ACTA ARITHMETICA, 1992, 62 (01) : 97 - 102
  • [22] Generalized k-cores of networks under attack with limited knowledge
    Shang, Yilun
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [23] Building k-nn Graphs From Large Text Data
    Debatty, Thibault
    Michiardi, Pietro
    Thonnard, Olivier
    Mees, Wim
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 573 - 578
  • [24] Homomorphisms from sparse graphs with large girth
    Borodin, OV
    Kim, SJ
    Kostochka, AV
    West, DB
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (01) : 147 - 159
  • [25] Large Deviations for Sparse Graphs
    Chatterjee, Sourav
    LARGE DEVIATIONS FOR RANDOM GRAPHS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLV - 2015, 2017, 2197 : 119 - 164
  • [26] Efficient Maximum k-Plex Computation over Large Sparse Graphs
    Chang, Lijun
    Xu, Mouyi
    Strash, Darren
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 127 - 139
  • [27] A note on [k, l]-sparse graphs
    Fekete, Zsolt
    Szego, Laszlo
    GRAPH THEORY IN PARIS: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 169 - +
  • [28] (k, j)-coloring of sparse graphs
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Raspaud, A.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) : 1947 - 1953
  • [29] (k, 1)-coloring of sparse graphs
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Raspaud, A.
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1128 - 1135
  • [30] LARGE HOLES IN SPARSE RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    COMBINATORICA, 1987, 7 (03) : 265 - 274