Exploring Data Layout for Sparse Tensor Times Dense Matrix on GPUs

被引:1
|
作者
Ahmad, Khalid [1 ,3 ]
Cecka, Cris [2 ,4 ]
Garland, Michael [2 ,4 ]
Hall, Mary [1 ,3 ]
机构
[1] Univ Utah, Salt Lake City, UT USA
[2] NVIDIA Corp, Santa Clara, CA USA
[3] Univ Utah, Salt Lake City, UT 84108 USA
[4] NVIDIA Corp, Santa Clara, CA 95051 USA
关键词
Sparse tensors; SpMM; data layout;
D O I
10.1145/3633462
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An important sparse tensor computation is sparse-tensor-dense-matrix multiplication (SpTM), which is used in tensor decomposition and applications. SpTMis a multi-dimensional analog to sparse-matrix-dense-matrix multiplication (SpMM). In this article, we employ a hierarchical tensor data layout that can unfold a multidimensional tensor to derive a 2D matrix, making it possible to compute SpTM using SpMM kernel implementations for GPUs. We compare two SpMM implementations to the state-of-the-art PASTA sparse tensor contraction implementation using: (1) SpMM with hierarchical tensor data layout; and, (2) unfolding followed by an invocation of cuSPARSE's SpMM. Results show that SpMM can outperform PASTA 70.9% of the time, but none of the three approaches is best overall. Therefore, we use a decision tree classifier to identify the best performing sparse tensor contraction kernel based on precomputed properties of the sparse tensor.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Batched Small Tensor-Matrix Multiplications on GPUs
    Zhai, Keke
    Banerjee, Tania
    Wijayasiri, Adeesha
    Ranka, Sanjay
    2020 IEEE 27TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC 2020), 2020, : 305 - 314
  • [22] Optimization of Sparse Matrix Computation for Algebraic Multigrid on GPUs
    Wang, Yizhuo
    Chang, Fangli
    Wei, Bingxin
    Gao, Jianhua
    Ji, Weixing
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2024, 21 (03)
  • [23] Unleashing the performance of bmSparse for the sparse matrix multiplication in GPUs
    Berger, Gonzalo
    Freire, Manuel
    Marini, Renzo
    Dufrechou, Ernesto
    Ezzatti, Pablo
    PROCEEDINGS OF SCALA 2021: 12TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE- SCALE SYSTEMS, 2021, : 19 - 26
  • [24] Exploiting the capabilities of modern GPUs for dense matrix computations
    Barrachina, Sergio
    Castillo, Maribel
    Igual, Francisco D.
    Mayo, Rafael
    Quintana-Orti, Enrique S.
    Quintana-Orti, Gregorio
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2009, 21 (18): : 2457 - 2477
  • [25] Sparse Matrix-Vector Product for the bmSparse Matrix Format in GPUs
    Berger, Gonzalo
    Dufrechou, Ernesto
    Ezzatti, Pablo
    EURO-PAR 2023: PARALLEL PROCESSING WORKSHOPS, PT I, EURO-PAR 2023, 2024, 14351 : 246 - 256
  • [26] Static Cost Estimation for Data Layout Selection on GPUs
    Peng, Yuhan
    Grossman, Max
    Sarkar, Vivek
    PROCEEDINGS OF PMBS 2016: 7TH INTERNATIONAL WORKSHOP ON PERFORMANCE MODELING, BENCHMARKING AND SIMULATION OF HIGH PERFORMANCE COMPUTING SYSTEMS, 2016, : 76 - 86
  • [27] Adaptive Optimization for Sparse Data on Heterogeneous GPUs
    Ma, Yujing
    Rusu, Florin
    Wu, Kesheng
    Sim, Alexander
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022), 2022, : 1088 - 1097
  • [28] TileSpMSpV: A Tiled Algorithm for Sparse Matrix-Sparse Vector Multiplication on GPUs
    Ji, Haonan
    Song, Huimin
    Lu, Shibo
    Jin, Zhou
    Tan, Guangming
    Liu, Weifeng
    51ST INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2022, 2022,
  • [29] Optimizing Sparse Tensor Times Matrix on Multi-core and Many-core Architectures
    Li, Jiajia
    Ma, Yuchen
    Yan, Chenggang
    Vuduc, Richard
    PROCEEDINGS OF 2016 6TH WORKSHOP ON IRREGULAR APPLICATIONS: ARCHITECTURE AND ALGORITHMS (IA3), 2016, : 26 - 33
  • [30] Regularizing Irregularity: Bitmap-based and Portable Sparse Matrix Multiplication for Graph Data on GPUs
    Zhang, Jianting
    Gruenwald, Le
    GRADES-NDA '18: PROCEEDINGS OF THE 1ST ACM SIGMOD JOINT INTERNATIONAL WORKSHOP ON GRAPH DATA MANAGEMENT EXPERIENCES & SYSTEMS (GRADES) AND NETWORK DATA ANALYTICS (NDA) 2018 (GRADES-NDA 2018), 2018,