Comparative study on flexural performance of ultra-high performance concrete beams reinforced with steel rebar and steel plate

被引:6
|
作者
Yan, Banfu [1 ]
Chen, Qiuyan [1 ]
Qiu, Minghong [2 ,6 ]
Zhu, Yanping [3 ]
Tu, Bing [1 ]
Shao, Xudong [4 ,5 ]
机构
[1] Guangxi Univ, Sch Civil Engn & Architecture, Nanning, Peoples R China
[2] Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China
[3] Missouri Univ Sci & Technol, Civil Architectural & Environm Engn, Rolla, MO USA
[4] Hunan Univ, Key Lab Wind & Bridge Engn Hunan Prov, Changsha, Peoples R China
[5] Hunan Univ, Natl Key Lab Bridge Safety & Resilience, Changsha, Peoples R China
[6] Univ Hong Kong, Dept Civil Engn, Pokfulam, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
cracking behavior; flexural behavior; reinforcement patterns; steel plate; ultimate capacity; ultra-high performance concrete (UHPC); STRUCTURAL PERFORMANCE; BEHAVIOR; STRENGTH; GFRP;
D O I
10.1002/suco.202300145
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To enhance the mechanical and constructional performance of the ultra-high performance concrete (UHPC) beams, the steel plate placed at the bottom surface of the UHPC beam is utilized to replace the ordinary steel rebars. In this paper, four 3.2 m UHPC T-shaped beams with different reinforcement patterns of ordinary steel rebars and external steel plate were fabricated and comparatively tested under flexure loading. Their damage patterns, load versus deflection behavior, flexural capacity, load versus strain behavior, moment versus curvature behavior, stiffness, and crack development were investigated. The flexural experiments indicated that the external steel plate, positioned at the bottom surface of the UHPC members, could resolve the difficulty of installing ordinary steel rebars in slender UHPC components and improve its constructional performance. Compared with the inside steel rebar reinforcement, the employment of the steel plate at the bottom surface of the UHPC beam can effectively increase the distance from the neutral axis to the tensile reinforcement at the serviceability and ultimate states, thereby improving its flexural capacity and stiffness. Additionally, the configuration of the external steel plate was beneficial to reduce the tensile stress level of the tensile reinforcement and limit the opening of UHPC crack width, and thus their crack resistance can be effectively enhanced. Moreover, increasing the thickness of the steel plate or rebar ratio can also significantly improve the flexural capacity, stiffness, and cracking resistance of UHPC beams.
引用
收藏
页码:2536 / 2552
页数:17
相关论文
共 50 条
  • [31] Flexural Performance of Lightly Reinforced Concrete Beams with Ultra-High Strength Fiber-Reinforced Concrete (UHSFRC)
    Kang, Su-Tae
    Ryu, Gum-Sung
    Park, Jung-Jun
    Koh, Kyung-Taek
    Kim, Sung-Wook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 1032 - 1038
  • [32] Experimental study of the bonding behavior between coarse aggregate ultra-high performance concrete and steel rebar
    Huang, Yuan
    Yu, Zhifan
    ENGINEERING STRUCTURES, 2023, 288
  • [33] Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers
    Yoo, Doo-Yeol
    Kim, Sung-Wook
    Park, Jung-Jun
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 132 : 219 - 229
  • [34] A Theoretical Study to Predict the Flexural Strength of Singly and Doubly Reinforced Ultra-High Performance Concrete Beams
    Jabbar A.M.
    Hasan Q.A.
    Abdul-Husain Z.A.
    Journal of Engineering Science and Technology Review, 2022, 15 (02): : 91 - 101
  • [35] Multi-scale study on penetration performance of steel fiber reinforced ultra-high performance concrete
    Sun, Weiwei
    Zhang, Wei
    Yuan, Jun
    Gao, Xudong
    Wu, Yuqing
    Ni, Wenze
    Feng, Jun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 422
  • [36] Study on shear behavior of reinforced ultra-high performance concrete beams
    Ma K.
    Ma Y.
    Xing G.
    Liu B.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2022, 43 (12): : 179 - 188
  • [37] Bonding Performance of Steel Rebar Coated with Ultra-High-Performance Concrete
    Eom, In-Hyeok
    Oh, Sang-Keun
    Kim, Byoungil
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [38] Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses
    Kim, Seonhyeok
    Kil, Taegeon
    Shin, Sangmin
    Jang, Daeik
    Yoon, H. N.
    Bae, Jin-Ho
    Seo, Joonho
    Yang, Beomjoo
    COMPUTERS AND CONCRETE, 2023, 32 (05): : 487 - 498
  • [39] Flexural behaviour of damaged concrete T-beams reinforced with ultra-high performance concrete filling
    Huang, Shuai
    Xi, Yonglei
    Li, Xin
    Men, Pengfei
    Wu, Gangan
    FRONTIERS IN MATERIALS, 2024, 11
  • [40] Study on flexural and shear performance of ultra-high performance concrete prefabricated pi-beams
    Sun, Bin
    Luo, Rui
    Xiao, Rucheng
    Huang, Jianyong
    Song, Chaolin
    Wang, Junyan
    Wang, Wei
    STRUCTURAL CONCRETE, 2023, 24 (06) : 7116 - 7134