Transferable Water Potentials Using Equivariant Neural Networks

被引:5
|
作者
Maxson, Tristan [1 ]
Szilvasi, Tibor [1 ]
机构
[1] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 14期
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; ENERGY SURFACE; INTERFACES; SOLVATION; SPC;
D O I
10.1021/acs.jpclett.4c00605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning interatomic potentials (MLIPs) have emerged as a technique that promises quantum theory accuracy for reduced cost. It has been proposed [J. Chem. Phys. 2023, 158, 084111] that MLIPs trained on solely liquid water data cannot accurately transfer to the vapor-liquid equilibrium while recovering the many-body decomposition (MBD) analysis of gas-phase water clusters. This suggests that MLIPs do not directly learn the physically correct interactions of water molecules, limiting transferability. In this work, we show that MLIPs using equivariant architecture and trained on 3200 liquid water structures reproduces liquid-phase water properties (e.g., density within 0.003 g/cm(3) between 230 and 365 K), vapor-liquid equilibrium properties up to 550 K, the MBD analysis of gas-phase water cluster up to six-body interactions, and the relative energy and the vibrational density of states of ice phases. We show that potentials developed using equivariant MLIPs allow transferability for arbitrary phases of water that remain stable in nanosecond long simulations.
引用
收藏
页码:3740 / 3747
页数:8
相关论文
共 50 条
  • [1] Transferable equivariant graph neural networks for the Hamiltonians of molecules and solids
    Zhong, Yang
    Yu, Hongyu
    Su, Mao
    Gong, Xingao
    Xiang, Hongjun
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [2] Transferable equivariant graph neural networks for the Hamiltonians of molecules and solids
    Yang Zhong
    Hongyu Yu
    Mao Su
    Xingao Gong
    Hongjun Xiang
    npj Computational Materials, 9
  • [3] Learning Transferable Feature Representations Using Neural Networks
    Bhatt, Himanshu S.
    Roy, Shourya
    Rajkumar, Arun
    Ramakrishnan, Sriranjani
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 4124 - 4134
  • [4] Enhanced exploration of LiF-NaF thermal conductivity through transferable equivariant graph neural networks
    Murg, Luca
    Lee, Shao-Chun
    Grizzi, Vitor F.
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (06)
  • [5] Equivariant Hypergraph Neural Networks
    Kim, Jinwoo
    Oh, Saeyoon
    Cho, Sungjun
    Hong, Seunghoon
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 86 - 103
  • [6] Clifford Group Equivariant Neural Networks
    Ruhe, David
    Brandstetter, Johannes
    Forre, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Simon Batzner
    Albert Musaelian
    Lixin Sun
    Mario Geiger
    Jonathan P. Mailoa
    Mordechai Kornbluth
    Nicola Molinari
    Tess E. Smidt
    Boris Kozinsky
    Nature Communications, 13
  • [8] Equivariant neural networks for inverse problems
    Celledoni, Elena
    Ehrhardt, Matthias J.
    Etmann, Christian
    Owren, Brynjulf
    Schonlieb, Carola-Bibiane
    Sherry, Ferdia
    INVERSE PROBLEMS, 2021, 37 (08)
  • [9] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Batzner, Simon
    Musaelian, Albert
    Sun, Lixin
    Geiger, Mario
    Mailoa, Jonathan P.
    Kornbluth, Mordechai
    Molinari, Nicola
    Smidt, Tess E.
    Kozinsky, Boris
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Equivariant Neural Networks for Indirect Measurements
    Beckmann, Matthias
    Heilenkotter, Nick
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2024, 6 (03): : 579 - 601