Magnetic Resonance Imaging-Based Assessment of Pancreatic Fat Strongly Correlates With Histology-Based Assessment of Pancreas Composition

被引:3
|
作者
Kiemen, Ashley L. [1 ,2 ,3 ]
Dbouk, Mohamad [1 ,4 ]
Diwan, Elizabeth Abou [5 ]
Forjaz, Andre [2 ]
Dequiedt, Lucie [2 ]
Baghdadi, Azarakhsh [6 ]
Madani, Seyedeh Panid [6 ]
Grahn, Mia P. [2 ]
Jones, Craig [7 ,8 ]
Vedula, Swaroop [8 ]
Wu, PeiHsun [2 ]
Wirtz, Denis [1 ,2 ,3 ,9 ]
Kern, Scott [1 ,3 ,10 ]
Goggins, Michael [1 ,3 ]
Hruban, Ralph H. [1 ,3 ]
Kamel, Ihab R. [6 ]
Canto, Marcia Irene [3 ,10 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD USA
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD USA
[4] Washington Univ, Dept Med, St Louis, MO USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[6] Johns Hopkins Univ, Sch Med, Div Radiol & Radiol Sci, Baltimore, MD USA
[7] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD USA
[8] Johns Hopkins Univ, Malone Ctr Engn Healthcare, Baltimore, MD USA
[9] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Sch Med, Div Gastroenterol & Hepatol, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
deep learning; pancreatic cancer; MRI; fat; QUANTITATIVE ASSESSMENT; LIVER-DISEASE; STEATOSIS; FIBROSIS; QUANTIFICATION; OBESITY;
D O I
10.1097/MPA.0000000000002288
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objective The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. Materials and Methods In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. Results Twenty-seven patients (mean age 64.0 +/- 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor (r = 0.65, P < 0.001); and collagen (r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar (r = -0.85, P < 0.001) content. Conclusions Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.
引用
收藏
页码:e180 / e186
页数:7
相关论文
共 50 条
  • [41] Assessment of axial spondyloarthritis activity using a magnetic resonance imaging-based multi-region-of-interest fusion model
    Peijin Xin
    Qizheng Wang
    Ruixin Yan
    Yongye Chen
    Yupeng Zhu
    Enlong Zhang
    Cui Ren
    Ning Lang
    Arthritis Research & Therapy, 25
  • [42] Cardiac Magnetic Resonance Imaging-Based Right Ventricular Strain Analysis for Assessment of Coupling and Diastolic Function in Pulmonary Hypertension
    Tello, Khodr
    Dalmer, Antonia
    Vanderpool, Rebecca
    Ghofrani, Hossein A.
    Naeije, Robert
    Roller, Fritz
    Seeger, Werner
    Wilhelm, Jochen
    Gall, Henning
    Richter, Manuel J.
    JACC-CARDIOVASCULAR IMAGING, 2019, 12 (11) : 2155 - 2164
  • [43] Imaging-based visual inspection for bridge condition assessment
    Yan, Ban-Fu
    Shao, Xu-Dong
    STRUCTURAL CONDITION ASSESSMENT, MONITORING AND IMPROVEMENT, VOLS 1 AND 2, 2007, : 1497 - 1504
  • [44] Magnetic Resonance Imaging-Based Prediction of Prostate Cancer Risk
    Bianchi, Giampaolo
    Sighinolfi, Maria Chiara
    Rocco, Bernardo
    JAMA ONCOLOGY, 2018, 4 (11) : 1624 - 1625
  • [45] Magnetic Resonance Imaging-Based Robotic Radiosurgery of Arteriovenous Malformations
    Greve, Tobias
    Ehret, Felix
    Hofmann, Theresa
    Thorsteinsdottir, Jun
    Dorn, Franziska
    Svigelj, Viktor
    Resman-Gaspersic, Anita
    Tonn, Joerg-Christian
    Schichor, Christian
    Muacevic, Alexander
    FRONTIERS IN ONCOLOGY, 2021, 10
  • [46] Magnetic resonance imaging-based treatment planning for prostate brachytherapy
    Albert, Jeffrey M.
    Swanson, David A.
    Pugh, Thomas J.
    Zhang, Michael
    Bruno, Teresa L.
    Kudchadker, Rajat J.
    Frank, Steven J.
    BRACHYTHERAPY, 2013, 12 (01) : 30 - 37
  • [47] Magnetic resonance imaging-based pathogenic investigation of patellar instability
    Song, Yi-Fan
    Wang, Xue-Ying
    Niu, Ying-Zhen
    Dong, Zhen-Yue
    Qi, Jian-Chao
    Wang, Fei
    CHINESE MEDICAL JOURNAL, 2019, 132 (16) : 1998 - 1999
  • [48] Diffusion Magnetic Resonance Imaging-Based Biomarkers for Neurodegenerative Diseases
    Kamagata, Koji
    Andica, Christina
    Kato, Ayumi
    Saito, Yuya
    Uchida, Wataru
    Hatano, Taku
    Lukies, Matthew
    Ogawa, Takashi
    Takeshige-Amano, Haruka
    Akashi, Toshiaki
    Hagiwara, Akifumi
    Fujita, Shohei
    Aoki, Shigeki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (10)
  • [49] Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy
    Leung, Doris G.
    MUSCLE & NERVE, 2019, 60 (04) : 347 - 360
  • [50] Magnetic Resonance Imaging-Based Grading of Cartilaginous Bone Tumors
    Krome, Susanne
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (07): : 609 - 609