Granulometric analysis of aggregate for concrete through an algorithm based on neural networks (Deep Learning)

被引:0
|
作者
Gutierrez Layme, Delia [1 ]
Lopez Hinostroza, Hamhit [1 ]
Sosa Aquise, Ruben [1 ]
机构
[1] Univ Peruana Union, Lima, Peru
来源
REVISTA INGENIERIA DE CONSTRUCCION | 2023年 / 38卷 / 03期
关键词
Aggregate; algorithm; granulometry; neural network;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Currently, the traditional mix design fails to adequately optimize the times involved. Therefore, it is proposed to use the neural network method to improve efficiency in terms of time and access to difficult places, as well as transport to the laboratory. The main objective is to apply deep learning techniques to evaluate the quality of a quarry aggregate and determine if it meets the specifications required for its specific use, in accordance with current regulations. The methodology consisted of collecting 20 images per sample, obtaining the granulometry analysis, 2 quarries from the department of Junin Satipo (Sonomoro and Llaylla) and 1 quarry from the department of Cusco (Vicho) were considered, with a total of 13 samples, in The present article carried out is located within a type of experimental research with a quantitative approach. The results were obtained through the execution of the Yolo algorithm, with image detection, obtaining 93.20%, according to the Peruvian technical standard (NTP 400.12, 2001), with a standard deviation of 0.96%. The algorithm was trained according to the sieves given in the Peruvian technical standard (NTP 350.001, 1970). In conclusion, the use of the algorithm in the data analysis has allowed to significantly reduce the time required to carry out the physical evaluation and has effectively improved the study of the aggregate.
引用
收藏
页码:448 / 460
页数:13
相关论文
共 50 条
  • [41] NeuroMask: Explaining Predictions of Deep Neural Networks through Mask Learning
    Alzantot, Moustafa
    Widdicombe, Amy
    Julier, Simon
    Srivastava, Mani
    2019 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2019), 2019, : 81 - 86
  • [42] A concrete mix proportion design algorithm based on artificial neural networks
    Ji, Tao
    Lin, Tingwei
    Lin, Xujian
    CEMENT AND CONCRETE RESEARCH, 2006, 36 (07) : 1399 - 1408
  • [43] Towards Explaining Deep Neural Networks Through Graph Analysis
    Horta, Vitor A. C.
    Mileo, Alessandra
    DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2019), 2019, 1062 : 155 - 165
  • [44] Convergence Analysis for Learning Orthonormal Deep Linear Neural Networks
    Qin, Zhen
    Tan, Xuwei
    Zhu, Zhihui
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 795 - 799
  • [45] Deep Learning with Convolutional Neural Networks for Histopathology Image Analysis
    Bosnacki, Dragan
    van Riel, Natal
    Veta, Mitko
    AUTOMATED REASONING FOR SYSTEMS BIOLOGY AND MEDICINE, 2019, 30 : 453 - 469
  • [46] Federated Learning for Medical Image Analysis with Deep Neural Networks
    Nazir, Sajid
    Kaleem, Mohammad
    DIAGNOSTICS, 2023, 13 (09)
  • [47] Generalization Analysis of Pairwise Learning for Ranking With Deep Neural Networks
    Huang, Shuo
    Zhou, Junyu
    Feng, Han
    Zhou, Ding-Xuan
    NEURAL COMPUTATION, 2023, 35 (06) : 1135 - 1158
  • [48] Concept learning through deep reinforcement learning with memory-augmented neural networks
    Shi, Jing
    Xu, Jiaming
    Yao, Yiqun
    Xu, Bo
    NEURAL NETWORKS, 2019, 110 : 47 - 54
  • [49] Structure Learning for Deep Neural Networks Based on Multiobjective Optimization
    Liu, Jia
    Gong, Maoguo
    Miao, Qiguang
    Wang, Xiaogang
    Li, Hao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) : 2450 - 2463
  • [50] Using deep learning neural networks for ECG based authentication
    Chamatidis, Ilias
    Katsika, Aggeliki
    Spathoulas, Georgios
    2017 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2017,