Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel

被引:4
|
作者
Yin, Qianxing [1 ]
Hu, Ping [1 ]
Xu, Zhao [2 ]
Li, Hui [1 ,2 ]
Li, Hui [1 ,2 ]
Shen, Shengnan [1 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[2] Wuhan Polytech Univ, Sch Mech Engn, Wuhan 430048, Peoples R China
关键词
Laser powder bed fusion; Laser ultrasonic detection; Surface roughness; Internal holes; Longitudinal wave; MODEL;
D O I
10.1016/j.jmrt.2023.12.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In view of the non-destructive and non-contact features, laser ultrasonic (LU) technology has long been the effective method to detect tiny defects for laser powder bed fusion (LPBF) additive manufactured specimens. Of larger concern is the variation and the corresponding mechanism on tested results of LU detection as the property of LPBF additive manufactured specimen is changed. Aiming at the property of surface roughness, this work investigated the propagation characteristics of excited ultrasonic waves in LPBF additive manufactured 316L stainless steel with different surface roughness, as well as the interaction between ultrasonic waves and artificial submillimeter holes. Both numerical simulated and experimental study were conducted. Simulated results revealed that the amplitudes of longitudinal wave (L wave) and its echo wave L1 at the holes exhibited a discernible increase as the surface was coarser. The increase in surface roughness was detrimental to the resolution of defect detection as was expected from the increased amount of noise. LPBF fabrication and the subsequent LU pulse-echo detection were conducted for 316L stainless steel. Both B-scan and C-scan were able to detect the holes with the diameter of 0.6 mm. The speckle phenomenon deriving from the increase in surface roughness emerged, corresponding to the increased ultrasonic signal energy but deteriorated resolution of detected images. It is feasible to optimize LU detected effect by minimize the surface roughness of tested specimens.
引用
收藏
页码:605 / 614
页数:10
相关论文
共 50 条
  • [21] Laser ultrasonic testing for near-surface defects inspection of 316L stainless steel fabricated by laser powder bed fusion
    Ting Dai
    Xiao-jian Jia
    Jun Zhang
    Jin-feng Wu
    Yi-wei Sun
    Shu-xian Yuan
    Guan-bing Ma
    Xiao-jing Xiong
    Hui Ding
    China Foundry, 2021, 18 (04) : 360 - 368
  • [22] Weldability of Additively Manufactured Powder Bed Fusion 316L Stainless Steel Using Arc and Laser Welding
    Faes, Koen
    Nunes, Rafael
    Probst, Florian
    Ceuppens, Robin
    De Waele, Wim
    CRYSTALS, 2024, 14 (04)
  • [23] FRACTURE TOUGHNESS TESTING OF 316L STEEL MANUFACTURED BY LASER POWDER BED FUSION
    Tan, Ee E.
    Sorce, Fabian S.
    Davies, Catrin M.
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,
  • [24] Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Chengsong
    Wang, Yong
    Zhang, Hua
    Ni, Hongwei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3896 - 3912
  • [25] Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion
    Trisnanto, Satria Robi
    Wang, Xianglong
    Brochu, Mathieu
    Omanovic, Sasha
    CORROSION SCIENCE, 2022, 196
  • [26] Investigation on the characteristics of porosity, melt pool in 316L stainless steel manufactured by laser powder bed fusion
    Liu, Cheng-song
    Xue, Xiao
    Wang, Yong
    Zhang, Hua
    Li, Jie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 1832 - 1844
  • [27] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [28] Influence of powder recycling on 316L stainless steel feedstocks and printed parts in laser powder bed fusion
    Delacroix, Timothee
    Lomello, Fernando
    Schuster, Frederic
    Maskrot, Hicham
    Garandet, Jean-Paul
    ADDITIVE MANUFACTURING, 2022, 50
  • [29] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [30] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)