Characterizations of monotone right continuous functions which generate associative functions

被引:3
|
作者
Zhang, Yun-Mao [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Associative function; Right continuous function; Pseudo-inverse; Semigroup; Triangular norm; TRIANGULAR NORMS; ADDITIVE GENERATORS;
D O I
10.1016/j.fss.2023.108799
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Associativity of a two-place function T : [0, 1](2)->[0, 1] defined by T(x, y) = f((-1))(T*(f(x), f(y))) where T* : [0, 1](2) -> [0, 1] is an associative function with neutral element in [0, 1], f : [0, 1] -> [0, 1] is a monotone right continuous function and f((-1)) : [0, 1] -> [0, 1] is the pseudo-inverse of f depends only on properties of the range of f. The necessary and sufficient conditions for the T to be associative are presented by applying the properties of the monotone right continuous function f.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ADDITIVE FUNCTIONS WHICH ARE MONOTONE ON A RARE SET
    FREUD, R
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (1-2): : 151 - 156
  • [22] On the functions which enjoy the Baire property of continuous functions
    Sierpinski, W
    ANNALS OF MATHEMATICS, 1934, 35 : 278 - 283
  • [23] Matrix power means and new characterizations of operator monotone functions
    Dinh, Trung Hoa
    Le, Cong Trinh
    Nguyen, The Van
    Vo, Bich Khue
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18): : 2986 - 2997
  • [24] On the almost monotone convergence of sequences of continuous functions
    Grande, Zbigniew
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (04): : 772 - 777
  • [25] Convex Monotone Semigroups on Lattices of Continuous Functions
    Denk, Robert
    Kupper, Michael
    Nendel, Max
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2023, 59 (02) : 393 - 421
  • [26] On Uniqueness of Conjugacy of Continuous and Piecewise Monotone Functions
    Cieplinski, Krzysztof
    Zdun, Marek Cezary
    FIXED POINT THEORY AND APPLICATIONS, 2009,
  • [27] Inverting monotone continuous functions in constructive analysis
    Schwichtenberg, Helmut
    LOGICAL APPROACHES TO COMPUTATIONAL BARRIERS, PROCEEDINGS, 2006, 3988 : 490 - 504
  • [28] On Uniqueness of Conjugacy of Continuous and Piecewise Monotone Functions
    Krzysztof Ciepliński
    Marek Cezary Zdun
    Fixed Point Theory and Applications, 2009
  • [29] Fitzpatrick functions and continuous linear monotone operators
    Bauschke, Heinz H.
    Borwein, Jonathan M.
    Wang, Xianfu
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (03) : 789 - 809
  • [30] Characterizations of Faintly (τ1, τ2)-Continuous Functions
    Srisarakham, Napassanan
    Sama-Ae, Areeyuth
    Boonpok, Chawalit
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2753 - 2762