Characterizations of monotone right continuous functions which generate associative functions

被引:3
|
作者
Zhang, Yun-Mao [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Associative function; Right continuous function; Pseudo-inverse; Semigroup; Triangular norm; TRIANGULAR NORMS; ADDITIVE GENERATORS;
D O I
10.1016/j.fss.2023.108799
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Associativity of a two-place function T : [0, 1](2)->[0, 1] defined by T(x, y) = f((-1))(T*(f(x), f(y))) where T* : [0, 1](2) -> [0, 1] is an associative function with neutral element in [0, 1], f : [0, 1] -> [0, 1] is a monotone right continuous function and f((-1)) : [0, 1] -> [0, 1] is the pseudo-inverse of f depends only on properties of the range of f. The necessary and sufficient conditions for the T to be associative are presented by applying the properties of the monotone right continuous function f.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The characterization of monotone functions that generate associative functions
    Chen, Meng
    Zhang, Yun-Mao
    Wang, Xue-ping
    FUZZY SETS AND SYSTEMS, 2025, 500
  • [2] New characterizations of operator monotone functions
    Trung Hoa Dinh
    Dumitru, Raluca
    Franco, Jose A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 169 - 186
  • [3] New characterizations of operator monotone functions
    Vo, Bich Khue
    Dinh, Trung Hoa
    Osaka, Hiroyuki
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (3-4): : 623 - 636
  • [4] On Properties of Continuous Monotone Functions
    M. D. Kovalev
    A. A. Kuleshov
    Mathematical Notes, 2023, 113 : 874 - 878
  • [5] On monotone sequences of continuous functions
    Young, WH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1908, 14 : 520 - 529
  • [6] On Properties of Continuous Monotone Functions
    Kovalev, M. D.
    Kuleshov, A. A.
    MATHEMATICAL NOTES, 2023, 113 (5-6) : 874 - 878
  • [7] Monotone insertion of continuous functions
    Good, C
    Stares, I
    TOPOLOGY AND ITS APPLICATIONS, 2000, 108 (01) : 91 - 104
  • [8] Uniformly monotone functions - Definition, properties, characterizations
    Lachout, Petr
    OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 550 - 556
  • [9] APPROXIMATION OF CONTINUOUS AND QUASI-CONTINUOUS FUNCTIONS BY MONOTONE-FUNCTIONS
    DARST, RB
    SAHAB, S
    JOURNAL OF APPROXIMATION THEORY, 1983, 38 (01) : 9 - 27
  • [10] Monotone and convex restrictions of continuous functions
    Buczolich, Zoltan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 552 - 567