Experimental investigation of a packed bed membrane reactor for the direct conversion of CO2 to dimethyl ether

被引:7
|
作者
Poto, Serena [1 ]
Tanco, Margot Annabell Llosa [2 ]
Tanaka, David Alfredo Pacheco [2 ]
d'Angelo, M. Fernanda Neira [1 ]
Gallucci, Fausto [1 ,3 ]
机构
[1] Eindhoven Univ Technol, Sustainable Proc Engn Chem Engn & Chem, De Rondom 70, NL-5612 AP Eindhoven, Netherlands
[2] TECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
[3] Eindhoven Univ Technol, Eindhoven Inst Renewable Energy Syst EIRES, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
欧盟地平线“2020”;
关键词
Carbon membrane reactor; Proof of concept; Model validation; CO2; hydrogenation; DME synthesis; METHANOL SYNTHESIS; CARBON-DIOXIDE; DME PRODUCTION; PORE-SIZE; CATALYSTS; HYDROGENATION; DEHYDRATION; SYNGAS; DEHYDROGENATION; PERFORMANCE;
D O I
10.1016/j.jcou.2023.102513
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, the performance of a packed bed membrane reactor (PBMR) based on carbon molecular sieve membranes for the one-step CO2 conversion to dimethyl ether (DME) is experimentally compared to that of a conventional packed bed reactor (PBR) using a CuO-ZnO-Al2O3/HZSM-5 bifunctional catalyst. The PBMR outperforms the PBR in most of the experimental conditions. The benefits were greater at lower GHSV (i.e., conditions that approach thermodynamic equilibrium and water formation is more severe), with both XCO2 and YDME improvements of +35-40 % and +16-27 %, respectively. Larger sweep gas-to-feed (SW) ratios increase the extent of water removal (ca. 80 % at SW=5), and thus the performance of the PBMR. Nevertheless, alongside the removal of water, a considerably amount of all products are removed as well, leading to a greater improvement in the CO yield (+122 %) than the DME yield (+66 %). Higher temperatures selectively improve the rWGS reaction, leading to a lower YDME with respect to the PBR at 260 degrees C, due to the significant loss of methanol. Furthermore, larger transmembrane pressures (AP) were not beneficial for the performance of the PBMR due to the excess reactant loss (i.e., 98-99 % at AP = 3 bar). Finally, the reactor models developed in our previous studies accurately describe the performance of both the PBR and PBMR in the range of tested conditions. This result is of high relevance, since the reactor models could be used for further optimization studies and to simulate conditions which were not explored experimentally.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Basic metal oxide integrated DBD packed bed reactor for the decomposition of CO2
    Rao, M. Umamaheswara
    Bhargavi, K. V. S. S.
    Madras, Giridhar
    Subrahmanyam, Ch.
    CHEMICAL ENGINEERING JOURNAL, 2023, 468
  • [32] CO2 dissociation in a packed-bed plasma reactor: effects of operating conditions
    Xu, Shaojun
    Khalaf, Pericles, I
    Martin, Philip A.
    Whitehead, J. Christopher
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (07):
  • [33] The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion
    Uytdenhouwen, Yannick
    Meynen, Vera
    Cool, Pegie
    Bogaerts, Annemie
    CATALYSTS, 2020, 10 (05)
  • [34] Effects of precursor phase distribution on the performance of Cu-based catalysts for direct CO2 conversion to dimethyl ether
    Xia, Sijia
    Gong, Jiating
    Yin, Jian
    Zhao, Zhengyang
    Tang, Feiying
    Guo, Xinpeng
    Liu, Pingle
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 109
  • [35] Equilibrium conversion of CO2 in methanol synthesis and in direct synthesis of dimethyl ether under non-ideal conditions
    Ptaszek, A
    Grzesik, M
    INZYNIERIA CHEMICZNA I PROCESOWA, 2006, 27 (01): : 255 - 263
  • [36] Experimental implementation of a catalytic membrane reactor for the direct synthesis of DME from H2+CO/CO2
    Rodriguez-Vega, Pablo
    Ateka, Ainara
    Kumakiri, Izumi
    Vicente, Hector
    Erena, Javier
    Aguayo, Andres T.
    Bilbao, Javier
    CHEMICAL ENGINEERING SCIENCE, 2021, 234
  • [37] CFD simulation and experimental study of CO2 absorption in a rotating packed bed
    Li, Wen-Ling
    Liang, Hong-Wei
    Feng, Zi-Sheng
    Si, Cong-Cong
    Shao, Lei
    Chu, Guang-Wen
    Xiang, Yang
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2024, 200
  • [38] CO2 to Liquid Fuels: Photocatalytic Conversion in a Continuous Membrane Reactor
    Pomilla, Francesca Rita
    Brunetti, Adele
    Marci, Giuseppe
    Garcia-Lopez, Elisa Isabel
    Fontananova, Enrica
    Palmisano, Leonardo
    Barbieri, Giuseppe
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07): : 8743 - 8753
  • [39] Techno-economic evaluation of the direct conversion of CO2 to dimethyl carbonate using catalytic membrane reactors
    Kuenen, H. J.
    Mengers, H. J.
    Nijmeijer, D. C.
    van der Ham, A. G. J.
    Kiss, A. A.
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 86 : 136 - 147
  • [40] Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 Hydrogenation
    Wen-Jie Shen
    Ki-Won Jun
    Ho-Suk Choi
    Kyu-Wan Lee
    Korean Journal of Chemical Engineering, 2000, 17 : 210 - 216