La-Doped Ultrahigh-Nickel Layered Oxide Cathode with Enhanced Cycle Stability for Li-Ion Batteries

被引:9
|
作者
Zheng, Hao-Wen [1 ]
Liu, Zhi-Chao [1 ]
Chen, Yao-Zhong [2 ]
Gao, Xue-Ping [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin B&M Sci & Technol Co Ltd, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; cathode; ultrahigh-nickellayered oxides; La doping; cycle stability; NI-RICH CATHODE; LITHIUM; PERFORMANCE; LINI0.8CO0.15AL0.05O2; TRANSITION; CHALLENGES; CAPACITY;
D O I
10.1021/acsami.3c06472
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Currently, ultrahigh-nickel layered oxide is one of themost promisingcathodes for lithium-ion batteries, with the advantages of high theoreticalcapacity and low cost. However, some problems in ultrahigh-nickellayered oxides are more serious, such as irreversible structural transformation,particle cracking, and side reactions at the electrode/electrolyteinterface, resulting in the fast decay of the discharge capacity andmidpoint potential. In this work, La doping is introduced into ultrahigh-nickellayered LiNi0.9Co0.1O2 oxide to improvethe cycle stability on both discharge capacity and midpoint potential.As demonstrated, La can be doped successfully into the subsurfaceof LiNi0.9Co0.1O2 oxide, and themorphology of the oxide microspheres is not changed obviously by Ladoping. Compared with the pristine sample, the La-doped sample presentsimproved electrochemical performance, especially good cycle stabilizationon both discharge capacity and midpoint potential. In addition, aftera long-term cycle, the La-doped sample still maintains a relativelycomplete spherical morphology. It means that the pillaring effectof La with a large radius is helpful in accommodating the volume changecaused by the insertion/extraction of Li ions, thus easing the anisotropicstress accumulation and microcrack growth inside the microspheresof the La-doped sample.
引用
收藏
页码:35043 / 35051
页数:9
相关论文
共 50 条
  • [21] Impact of Nickel Substitution into Model Li-Rich Oxide Cathode Materials for Li-Ion Batteries
    Ting, Michelle
    Burigana, Matthew
    Zhang, Leiting
    Finfrock, Y. Zou
    Trabesinger, Sigita
    Jonderian, Antranik
    McCalla, Eric
    CHEMISTRY OF MATERIALS, 2020, 32 (02) : 849 - 857
  • [22] Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries
    Zhang, Xianhui
    Zou, Lianfeng
    Cui, Zehao
    Jia, Hao
    Engelhard, Mark H.
    Matthews, Bethany E.
    Cao, Xia
    Xie, Qiang
    Wang, Chongmin
    Manthiram, Arumugam
    Zhang, Ji-Guang
    Xu, Wu
    MATERIALS TODAY, 2021, 44 : 15 - 24
  • [23] Core-Shell Nanocomposites for Improving the Structural Stability of Li-Rich Layered Oxide Cathode Materials for Li-Ion Batteries
    Longo, Roberto C.
    Liang, Chaoping
    Kong, Fantai
    Cho, Kyeongjae
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) : 19226 - 19234
  • [24] A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries
    Li, Maofan
    Liu, Jiajie
    Liu, Tongchao
    Zhang, Mingjian
    Pan, Feng
    CHEMICAL COMMUNICATIONS, 2018, 54 (11) : 1331 - 1334
  • [25] A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries
    Ates, Mehmet Nurullah
    Mukerjee, Sanjeev
    Abraham, K. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : A1236 - A1245
  • [26] Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries
    Е. V. Makhonina
    L. S. Pechen
    V. V. Volkov
    А. М. Rumyantsev
    Yu. М. Koshtyal
    А. О. Dmitrienko
    Yu. А. Politov
    V. S. Pervov
    I. L. Eremenko
    Russian Chemical Bulletin, 2019, 68 : 301 - 312
  • [27] Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries
    Makhonina, E., V
    Pechen, L. S.
    Volkov, V. V.
    Rumyantsev, A. M.
    Koshtyal, Yu M.
    Dmitrienko, A. O.
    Politov, Yu A.
    Pervov, V. S.
    Eremenko, I. L.
    RUSSIAN CHEMICAL BULLETIN, 2019, 68 (02) : 301 - 312
  • [28] Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries
    Huang, Yiqing
    Lin, Yuh-Chieh
    Jenkins, David M.
    Chernova, Natasha A.
    Chung, Youngmin
    Radhakrishnan, Balachandran
    Chu, Iek-Heng
    Fang, Jin
    Wang, Qi
    Omenya, Fredrick
    Ong, Shyue Ping
    Whittingham, M. Stanley
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (11) : 7013 - 7021
  • [29] Microwave-reduced graphene oxide wrapped NCM layered oxide as a cathode material for Li-ion batteries
    Habibi, Amirhosein
    Jalaly, Maisam
    Rahmanifard, Roohollah
    Ghorbanzadeh, Milad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834
  • [30] Uniform Coating of Se on Selenophilic Surfaces of Nickel-Rich Layered Oxide Cathode Materials for High Performance Li-Ion Batteries
    Ding, Guoyu
    Li, Yahui
    Gao, Yuan
    Wang, Qiulin
    Zhu, Zhen
    Jing, Xinguo
    Yan, Fengqian
    Yue, Zhihao
    Li, Xiaomin
    Sun, Fugen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (26) : 9632 - 9640