Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain

被引:3
|
作者
Bhat, Mohammad Younus [1 ]
Dar, Aamir H. [1 ]
Zayed, Mohra [2 ]
Bhat, Altaf A. [3 ]
机构
[1] Islamic Univ Sci & Technol, Dept Math Sci, Kashmir 192122, India
[2] King Khalid Univ, Coll Sci, Math Dept, Abha 61413, Saudi Arabia
[3] Univ Technol & Appl Sci, Salalah 324, Oman
关键词
quadratic-phase Fourier transform; quaternion quadratic-phase Fourier transform; convolution; two-dimensional inversion formula; WIGNER-VILLE DISTRIBUTION; SIGNALS; COMPLEX; RECOGNITION;
D O I
10.3390/math11133002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a novel integral transform known as the one-dimensional quaternion quadratic-phase Fourier transform (1D-QQPFT). We first define the one-dimensional quaternion quadratic-phase Fourier transform (1D-QQPFT) of integrable (and square integrable) functions on R. Later on, we show that 1D-QQPFT satisfies all the respective properties such as inversion formula, linearity, Moyal's formula, convolution theorem, correlation theorem and uncertainty principle. Moreover, we use the proposed transform to obtain an inversion formula for two-dimensional quaternion quadratic-phase Fourier transform. Finally, we highlight our paper with some possible applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Composition of Quadratic-Phase Fourier Wavelet Transform
    Sharma P.B.
    Prasad A.
    International Journal of Applied and Computational Mathematics, 2022, 8 (3)
  • [22] Fractional quaternion Fourier transform, convolution and correlation
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    SIGNAL PROCESSING, 2008, 88 (10) : 2511 - 2517
  • [23] Uncertainty principles for the quadratic-phase Fourier transforms
    Shah, Firdous A.
    Nisar, Kottakkaran S.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10416 - 10431
  • [24] Directional Uncertainty Principle for Quaternion Fourier Transform
    Hitzer, Eckhard M. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (02) : 271 - 284
  • [25] Directional Uncertainty Principle for Quaternion Fourier Transform
    Eckhard M. S. Hitzer
    Advances in Applied Clifford Algebras, 2010, 20 : 271 - 284
  • [26] One-Dimensional Quaternion Fourier Transform with Application to Probability Theory
    Ekasasmita, Wahyuni
    Bahri, Mawardi
    Bachtiar, Nasrullah
    Rahim, Amran
    Nur, Muhammad
    SYMMETRY-BASEL, 2023, 15 (04):
  • [27] Short-time quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    OPTIK, 2021, 245
  • [28] Abelian Theorems for Quadratic-Phase Fourier Wavelet Transform
    Sharma, P. B.
    Prasad, A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2023, 93 (01) : 75 - 83
  • [29] Abelian Theorems for Quadratic-Phase Fourier Wavelet Transform
    P. B. Sharma
    A. Prasad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2023, 93 : 75 - 83
  • [30] Short Time Quaternion Quadratic Phase Fourier Transform and Its Uncertainty Principles
    Gupta, Bivek
    Verma, Amit K.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)