Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning

被引:6
|
作者
Arrechea-Castillo, Darwin Alexis [1 ]
Solano-Correa, Yady Tatiana [1 ,2 ]
Munoz-Ordonez, Julian Fernando [1 ,3 ]
Pencue-Fierro, Edgar Leonairo [1 ,4 ]
Figueroa-Casas, Apolinar [4 ]
机构
[1] Univ Cauca, Grp Opt & Laser GOL, Cauca 190003, Colombia
[2] Univ Tecnol Bolivar, Grp Invest Fis Aplicada & Proc Imagenes & Senales, Bolivar 130001, Colombia
[3] Corp Univ Comfacauca Unicomfacauca, Grp Invest Comp Informat Aplicada MIND, Cauca 190003, Colombia
[4] Univ Cauca, Grp Estudios Ambientales GEA, Cauca 190003, Colombia
基金
英国科研创新办公室;
关键词
land cover classification; land use classification; deep learning; convolutional neural network; remote sensing; sentinel-2; VEGETATION INDEXES; LEAF-AREA; PERFORMANCE; WATER;
D O I
10.3390/rs15102521
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land Use and Land Cover (LULC) classification using remote sensing data is a challenging problem that has evolved with the update and launch of new satellites in orbit. As new satellites are launched with higher spatial and spectral resolution and shorter revisit times, LULC classification has evolved to take advantage of these improvements. However, these advancements also bring new challenges, such as the need for more sophisticated algorithms to process the increased volume and complexity of data. In recent years, deep learning techniques, such as convolutional neural networks (CNNs), have shown promising results in this area. Training deep learning models with complex architectures require cutting-edge hardware, which can be expensive and not accessible to everyone. In this study, a simple CNN based on the LeNet architecture is proposed to perform LULC classification over Sentinel-2 images. Simple CNNs such as LeNet require less computational resources compared to more-complex architectures. A total of 11 LULC classes were used for training and validating the model, which were then used for classifying the sub-basins. The analysis showed that the proposed CNN achieved an Overall Accuracy of 96.51% with a kappa coefficient of 0.962 in the validation data, outperforming traditional machine learning methods such as Random Forest, Support Vector Machine and Artificial Neural Networks, as well as state-of-the-art complex deep learning methods such as ResNet, DenseNet and EfficientNet. Moreover, despite being trained in over seven million images, it took five h to train, demonstrating that our simple CNN architecture is only effective but is also efficient.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery
    Cuypers, Suzanna
    Nascetti, Andrea
    Vergauwen, Maarten
    REMOTE SENSING, 2023, 15 (10)
  • [32] Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping?
    Wasniewski, Adam
    Hoscilo, Agata
    Chmielewska, Milena
    REMOTE SENSING, 2022, 14 (04)
  • [33] Deep Learning in the Mapping of Agricultural Land Use Using Sentinel-2 Satellite Data
    Singh, Gurwinder
    Singh, Sartajvir
    Sethi, Ganesh
    Sood, Vishakha
    GEOGRAPHIES, 2022, 2 (04): : 691 - 700
  • [34] UNET NEURAL NETWORK IN AGRICULTURAL LAND COVER CLASSIFICATION USING SENTINEL-2
    Kramarczyk, P.
    Hejmanowska, B.
    2ND GEOBENCH WORKSHOP ON EVALUATION AND BENCHMARKING OF SENSORS, SYSTEMS AND GEOSPATIAL DATA IN PHOTOGRAMMETRY AND REMOTE SENSING, VOL. 48-1, 2023, : 85 - 90
  • [35] PIXEL-BASED CLASSIFICATION ANALYSIS OF LAND USE LAND COVER USING SENTINEL-2 AND LANDSAT-8 DATA
    Sekertekin, A.
    Marangoz, A. M.
    Akcin, H.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 42-4 (W6): : 91 - 93
  • [36] Evaluation of Land Use/Land Cover Classification based on Different Bands of Sentinel-2 Satellite Imagery using Neural Networks
    Pallavi, M.
    Thivakaran, T. K.
    Ganapathi, Chandankeri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 594 - 601
  • [37] Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification
    De Fioravante, Paolo
    Luti, Tania
    Cavalli, Alice
    Giuliani, Chiara
    Dichicco, Pasquale
    Marchetti, Marco
    Chirici, Gherardo
    Congedo, Luca
    Munafo, Michele
    LAND, 2021, 10 (06)
  • [38] Land use land cover mapping and snow cover detection in Himalayan region using machine learning and multispectral Sentinel-2 satellite imagery
    Saini R.
    Singh S.
    International Journal of Information Technology, 2024, 16 (2) : 675 - 686
  • [39] Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions
    Steinhausen, Max J.
    Wagner, Paul D.
    Narasimhan, Balaji
    Waske, Bjoern
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 595 - 604
  • [40] ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER/USE MAPPING
    Topaloglu, Raziye Hale
    Sertel, Elif
    Musaoglu, Nebiye
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 1055 - 1059