Numerical Investigation of Droplet Impact on the Surface by Multiphase Lattice Boltzmann Flux Solver

被引:0
|
作者
Bian, Qingyong [1 ,2 ]
Shu, Chang [3 ]
Zhao, Ning [1 ,2 ]
Zhu, Chengxiang [1 ,2 ]
Zhu, Chunling [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 119260, Singapore
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Large density ratio; Droplet impact; Rebound and adhesion; FLOWS;
D O I
10.1007/978-981-19-2689-1_52
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The dynamic behaviors of the micro-sized water droplet collision onto the wings of the aircraft are essential to the flight safety. The details on the small droplet in the airflow in contact with the aircraft wing surface play a quite important role in the ice accretion process. In this paper, multiphase lattice Boltzmann flux solver coupled with phase field method is applied to simulate the water droplet impact onto the solid hydrophilic/hydrophobic surface to further understand the interactions between droplet and surface at mesoscopic level. The reliability and accuracy of the numerical method is validated by the comparison with experimental data and computational results in other literatures, which shows that the solver is capable of predicting the droplet dynamic behaviors. Then, the effects of different physical parameters such as impact velocity, droplet diameter, surface contact angle and impact inclination angle, are systematically studied. The computational results reveal that when the collision is normal to the surface, the water droplet may experience spreading phase, recoiling phase as well as rebounding phase and finally shows the adhesion state or detachment from the surface. The higher velocity and larger diameter contribute to spread the droplet wider and jump higher during the droplet impact process. And a shorter physical time is taken to reach the spreading factor maximum for higher velocity while it is opposite for the droplet with a lager diameter. Moreover, the whole evolutionary process of smaller-sized droplet is accelerated and smaller diameter as well as higher contact angle of the surface advances the droplet detachment from the hydrophobic surface. It is also found that the surface with higher contact angle impedes the droplet spreading and removes the temporal lag of its performance in lifting up the upper end of droplet during recoiling phase and rebounding phase, which is distinct to the results of higher velocity and larger diameter. Besides this, droplet impact with an inclination angle causes reduction on the spreading factor maximum and jump height after detachment from the surface due to the decrease on the normal velocity of the droplet. And the increase of the tangential velocity accounts for the longer contact time with the surface for the droplet, and causes the difference of the spreading factors in spreading directions, which forms an oval contact area on the surface until the droplet detaches. The analysis and quantitative comparison of the temporal morphology evolutions of the micro-sized droplet in this paper help to reveal the interaction mechanism between the different-sized droplets and surfaces with different properties, which can be considered specially in the numerical prediction of the aircraft icing.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 50 条
  • [21] An improved axisymmetric interfacial lattice Boltzmann flux solver for large-density-ratio multiphase flows
    Yang, Liuming
    Yang, Xinmeng
    Yang, Yunfei
    Hou, Guoxiang
    Wang, Yan
    PHYSICS OF FLUIDS, 2024, 36 (02)
  • [22] A numerical investigation of bubble dynamics in a ferrofluid by improved multicomponent multiphase pseudopotential lattice Boltzmann model coupled with magnetic field solver
    Huang, Yichen
    Zhang, Ying
    Xu, Meng
    Lei, Jie
    Li, Zhihao
    Ye, Wenlin
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [23] COMPUTATIONS OF SINGLE AND MULTIPHASE FLOWS USING A LATTICE BOLTZMANN SOLVER
    Akhtar, M. Wasy
    Love, Holley C.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 3, 2019,
  • [24] Numerical investigation of head-on droplet collision with lattice Boltzmann method
    Sun, Kai
    Jia, Ming
    Wang, Tianyou
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) : 260 - 275
  • [25] Analysis and reconstruction of the thermal lattice Boltzmann flux solver
    Lu, Jinhua
    Dai, Chuanshan
    Yu, Peng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2023, 95 (03) : 391 - 420
  • [26] LATTICE BOLTZMANN FLUX SOLVER FOR SIMULATION OF HYPERSONIC FLOWS
    Meng, Z. X.
    Shu, C.
    Yang, L. M.
    Zhang, W. H.
    Hu, F.
    Li, S. Z.
    V INTERNATIONAL CONFERENCE ON PARTICLE-BASED METHODS - FUNDAMENTALS AND APPLICATIONS (PARTICLES 2017), 2017, : 203 - 214
  • [27] An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows
    Yuan, H. Z.
    Wang, Y.
    Shu, C.
    PHYSICS OF FLUIDS, 2017, 29 (12)
  • [28] An improved multiphase lattice Boltzmann flux solver for the simulation of incompressible flow with large density ratio and complex interface
    Yang, Liuming
    Shu, Chang
    Chen, Zhen
    Hou, Guoxiang
    Wang, Yan
    PHYSICS OF FLUIDS, 2021, 33 (03)
  • [29] Investigations of vortex dynamics driven primary breakup in diesel spray based on multiphase lattice Boltzmann flux solver
    Wang, Yue
    Li, De-Ming
    Liu, Jun-Long
    Zhao, Fei-Yang
    Yang, Li-Ming
    Yu, Wen-Bin
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [30] An improved multiphase lattice Boltzmann flux solver with a modified Cahn-Hilliard equation for multiphase flow with super large density ratio
    Zhang, Da
    Li, Yan
    Wang, Yan
    Shu, Chang
    PHYSICS OF FLUIDS, 2024, 36 (02)