Nonmetallic graphite for tumor magnetic hyperthermia therapy

被引:2
|
作者
Xie, Guangchao [1 ]
Guo, Shuyue [1 ]
Li, Bingjie [3 ,4 ]
Hou, Wenjing [1 ]
Zhang, Yanqi [2 ]
Pan, Jinbin [3 ,4 ]
Wei, Xi [1 ]
Sun, Shao-Kai [2 ]
机构
[1] Tianjin Med Univ, Natl Clin Res Ctr Canc, Dept Diagnost & Therapeut Ultrasonog, Key Lab Canc Prevent & Therapy,Canc Inst & Hosp, Tianjin 300060, Peoples R China
[2] Tianjin Med Univ, Sch Med Imaging, Tianjin Key Lab Funct Imaging, Tianjin 300203, Peoples R China
[3] Tianjin Med Univ, Dept Radiol, Tianjin 300052, Peoples R China
[4] Tianjin Med Univ, Tianjin Key Lab Funct Imaging, Gen Hosp, Tianjin 300052, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphite; Nonmetallic magnetocaloric materials; Magnetic hyperthermia therapy; Eddy thermal effect; Tumor therapy; HEATING EFFICIENCY; NANOPARTICLES; IMPLANTS;
D O I
10.1016/j.biomaterials.2024.122498
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetic hyperthermia therapy (MHT) has garnered immense interest due to its exceptional spatiotemporal specificity, minimal invasiveness and remarkable tissue penetration depth. Nevertheless, the limited magnetothermal heating capability and the potential toxicity of metal ions in magnetic materials based on metallic elements significantly impede the advancement of MHT. Herein, we introduce the concept of nonmetallic materials, with graphite (Gra) as a proof of concept, as a highly efficient and biocompatible option for MHT of tumors in vivo for the first time. The Gra exhibits outstanding magnetothermal heating efficacy owing to the robust eddy thermal effect driven by its excellent electrical conductivity. Furthermore, being composed of carbon, Gra offers superior biocompatibility as carbon is an essential element for all living organisms. Additionally, the Gra boasts customizable shapes and sizes, low cost, and large-scale production capability, facilitating reproducible and straightforward manufacturing of various Gra implants. In a mouse tumor model, Gra-based MHT successfully eliminates the tumors at an extremely low magnetic field intensity, which is less than onethird of the established biosafety threshold. This study paves the way for the development of highperformance magnetocaloric materials by utilizing nonmetallic materials in place of metallic ones burdened with inherent limitations.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] INTERSTITIAL LASER HYPERTHERMIA IN TUMOR-THERAPY
    MASTERS, A
    BOWN, SG
    ANNALES CHIRURGIAE ET GYNAECOLOGIAE, 1990, 79 (04) : 244 - 251
  • [22] USE OF LOCAL HYPERTHERMIA IN BRAIN TUMOR THERAPY
    SUTTON, CH
    PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, 1977, 18 (MAR): : 200 - 200
  • [23] Promising magnetic nanoradiosensitizers for combination of tumor hyperthermia and x-ray therapy: Theoretical calculation
    Davydov, Andrey S.
    Belousov, Alexandr V.
    Krusanov, Grigorii A.
    Kolyvanova, Maria A.
    Kovalev, Boris B.
    Komlev, Aleksei S.
    Krivoshapkin, Pavel V.
    Morozov, Vladimir N.
    Zverev, Vladimir I.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (03)
  • [24] Design of an imaging magnetic microsphere based on photopolymerization for magnetic hyperthermia in tumor therapy (vol 13, pg 2664, 2023)
    Xiao, Qinglin
    Chen, Piaoyi
    Chen, Mianrong
    Zhou, Yanfang
    Li, Jiesong
    Lun, Yingying
    Li, Qiuxia
    Ye, Guodong
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2024, 14 (03) : 839 - 839
  • [25] Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy
    Kita, Eiji
    Oda, Tatsuya
    Kayano, Takeru
    Sato, Suguru
    Minagawa, Makoto
    Yanagihara, Hideto
    Kishimoto, Mikio
    Mitsumata, Chiharu
    Hashimoto, Shinji
    Yamada, Keiichi
    Ohkohchi, Nobuhiro
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (47)
  • [26] Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy
    Fatima, Hira
    Charinpanitkul, Tawatchai
    Kim, Kyo-Seon
    NANOMATERIALS, 2021, 11 (05)
  • [27] Magnetic mesoporous silica spheres for hyperthermia therapy
    Martin-Saavedra, F. M.
    Ruiz-Hernandez, E.
    Bore, A.
    Arcos, D.
    Vallet-Regi, M.
    Vilaboa, N.
    ACTA BIOMATERIALIA, 2010, 6 (12) : 4522 - 4531
  • [28] Magnetic Gel Composites for Hyperthermia Cancer Therapy
    Haering, Marleen
    Schiller, Jana
    Mayr, Judith
    Grijalvo, Santiago
    Eritja, Ramon
    Diaz Diaz, David
    GELS, 2015, 1 (02) : 135 - 161
  • [29] Magnetic hyperthermia therapy enhances the chemoradiosensitivity of glioblastoma
    Rivera, Daniel
    Bouras, Alexandros
    Mattioli, Milena
    Anastasiadou, Maria
    Pacentra, Anna Chiara
    Pelcher, Olivia
    Koziel, Corrine
    Schupper, Alexander J.
    Chanenchuk, Tori
    Carlton, Hayden
    Ivkov, Robert
    Hadjipanayis, Constantinos G.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy
    Gupta, Ruby
    Sharma, Deepika
    ACS CHEMICAL NEUROSCIENCE, 2019, 10 (03): : 1157 - 1172