Perturbing eigenvalues of nonnegative centrosymmetric matrices

被引:0
|
作者
Diaz, Roberto C. [1 ,2 ]
Julio, Ana, I [2 ]
Linares, Yankis R. [2 ]
机构
[1] Univ La Serena, Dept Matemat, La Serena, Chile
[2] Univ Catolica Norte, Dept Matemat, Casilla 1280, Antofagasta, Chile
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 16期
关键词
Nonnegative matrices; inverse eigenvalue problem; centrosymmetric matrices; spectral perturbation; Guo's results; NON-REAL EIGENVALUES; BASIC PROPERTIES;
D O I
10.1080/03081087.2022.2118214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n x n matrix C is said to be centrosymmetric if it satisfies the relation JCJ = C, where J is the n x n counteridentity matrix. Centrosymmetric matrices have a rich eigenstructure that has been studied extensively in the literature. Many results for centrosymmetric matrices have been generalized to wider classes of matrices that arise in a wide variety of disciplines. In this paper, we obtain interesting spectral properties for nonnegative centrosymmetric matrices. We show how to change one single eigenvalue, two or three eigenvalues of an n x n nonnegative centrosymmetric matrix without changing any of the remaining eigenvalues, the nonnegativity, or the centrosymmetric structure. Moreover, our results allow partially answer some known questions given by [Guo W. Eigenvalues of nonnegative matrices. Linear Algebra Appl. 266;1997:261-270] and by [Guo S, Guo W. Perturbing non-real eigenvalues of non-negative real matrices. Linear Algebra Appl. 426;2007:199-203]. Our proofs generate algorithmic procedures that allow one to compute a solution matrix.
引用
收藏
页码:2670 / 2685
页数:16
相关论文
共 50 条