Achieving synergistic improvement in dielectric and energy storage properties at high-temperature of all-organic composites via physical electrostatic effect

被引:13
|
作者
Shang, Yanan [1 ,2 ]
Feng, Yu [1 ,2 ]
Meng, Zhaotong [1 ,2 ]
Zhang, Changhai [1 ,2 ]
Zhang, Tiandong [1 ,2 ]
Chi, Qingguo [1 ,2 ]
机构
[1] Harbin Univ Sci & Technol, Key Lab Engn Dielect & Its Applicat, Minist Educ, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMERS;
D O I
10.1039/d3mh01822a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In response to the increasing demand for miniaturization and lightweight equipment, as well as the challenges of application in harsh environments, there is an urgent need to explore the new generation of high-temperature-resistant film capacitors with excellent energy storage properties. In this study, we report an all-organic composite system based on two polymers with similar densities and high glass transition temperatures, achieving a synergistic effect of dielectric constant and breakdown strength. The preparation of the composite is simple, overcoming the challenge of dispersing nanoparticles in traditional organic-inorganic systems. The high polarity of polyethersulfone can modulate the polarization properties of the composites and, through a physical electrostatic effect, inhibit dipole relaxation, further reducing the current density of the composite dielectric at high temperatures, resulting in a significant improvement in insulating properties. The 9 : 1 composite dielectric at 150 C-degrees demonstrates an energy storage density of up to 6.4 J cm(-3 )and an efficiency of 82.7%. This study offers a promising candidate material and development direction for the next-generation energy storage capacitors with broad application prospects.
引用
收藏
页码:1528 / 1538
页数:11
相关论文
共 50 条
  • [21] Achieving Superior Energy Storage Properties of All-Organic Dielectric Polystyrene-Based Composites by Blending Rod-Coil Block Copolymers
    He, Guanghu
    Liu, Zijin
    Wang, Chao
    Chen, Sheng
    Luo, Hang
    Zhang, Dou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (24): : 8156 - 8169
  • [22] All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage
    Jiale Ding
    Wenhan Xu
    Xuanbo Zhu
    Zheng Liu
    Yunhe Zhang
    Zhenhua Jiang
    Nano Research, 2023, 16 : 10183 - 10190
  • [23] All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage
    Ding, Jiale
    Xu, Wenhan
    Zhu, Xuanbo
    Liu, Zheng
    Zhang, Yunhe
    Jiang, Zhenhua
    NANO RESEARCH, 2023, 16 (07) : 10183 - 10190
  • [24] All-Organic Sandwich-Structured Dielectric Films Based on Aramid Nanofibers and Polyimide for High-Temperature Electrical Energy Storage
    Duan, Guangyu
    Hu, Fengying
    Wang, Yabing
    Shao, Wenxuan
    Xu, Ruopu
    Lu, Duo
    Hu, Zuming
    ACS APPLIED NANO MATERIALS, 2024, 8 (01) : 543 - 551
  • [25] Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
    Jiale Ding
    Yao Zhou
    Wenhan Xu
    Fan Yang
    Danying Zhao
    Yunhe Zhang
    Zhenhua Jiang
    Qing Wang
    Nano-Micro Letters, 2024, 16 (03) : 404 - 412
  • [26] Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films
    Ding, Song
    Bao, Zhiwei
    Wang, Yiwei
    Dai, Zhizhan
    Jia, Jiangheng
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    JOURNAL OF POWER SOURCES, 2023, 570
  • [27] Ultrahigh energy storage performance of all-organic dielectrics at high-temperature by tuning the density and location of traps
    Feng, Mengjia
    Feng, Yu
    Zhang, Changhai
    Zhang, Tiandong
    Chen, Qingguo
    Chi, Qingguo
    MATERIALS HORIZONS, 2022, 9 (12) : 3002 - 3012
  • [28] Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
    Ding, Jiale
    Zhou, Yao
    Xu, Wenhan
    Yang, Fan
    Zhao, Danying
    Zhang, Yunhe
    Jiang, Zhenhua
    Wang, Qing
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [29] THE PHYSICAL PROPERTIES OF CEMENTITIOUS COMPOSITES FOR APPLICATIONS IN A HIGH-TEMPERATURE ENERGY STORAGE DEVICE
    Stastnik, Stanislav
    Bodnarova, Lenka
    SPECIAL CONCRETE AND COMPOSITES 2018, 2019, 22 : 99 - 106
  • [30] Scalable polyolefin-based all-organic dielectrics with superior high-temperature capacitive energy storage performance
    Zhou, Yao
    Chen, Yuhan
    Cui, Yuxin
    Li, Yanzhi
    Li, Zhiyuan
    Zhou, Changwu
    Cheng, Lu
    Liu, Wenfeng
    ENERGY STORAGE MATERIALS, 2024, 72