New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information

被引:2
|
作者
Monjezi, N. Hoseini [1 ]
Nobakhtian, S. [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Univ Isfahan, Fac Math & Stat, Dept Appl Math & Comp Sci, Esfahan, Iran
关键词
Proximal bundle method; Gradient sampling; Inexact information; Nonsmooth optimization; Nonconvex optimization; MINIMIZATION; CONVERGENCE; APPROXIMATE;
D O I
10.1007/s11075-023-01519-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on a descent algorithm for solving nonsmooth nonconvex optimization problems. The proposed method is based on the proximal bundle algorithm and the gradient sampling method and uses the advantages of both. In addition, this algorithm has the ability to handle inexact information, which creates additional challenges. The global convergence is proved with probability one. More precisely, every accumulation point of the sequence of serious iterates is either a stationary point if exact values of gradient are provided or an approximate stationary point if only inexact information of the function and gradient values is available. The performance of the proposed algorithm is demonstrated using some academic test problems. We further compare the new method with a general nonlinear solver and two other methods specifically designed for nonconvex nonsmooth optimization problems.
引用
收藏
页码:765 / 787
页数:23
相关论文
共 50 条
  • [21] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [22] Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) : 379 - 388
  • [23] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    Optimization Letters, 2022, 16 : 1495 - 1511
  • [24] A robust gradient sampling algorithm for nonsmooth, nonconvex optimization
    Burke, JV
    Lewis, AS
    Overton, ML
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) : 751 - 779
  • [25] Inexact proximal gradient algorithm with random reshuffling for nonsmooth optimization
    Jiang, Xia
    Fang, Yanyan
    Zeng, Xianlin
    Sun, Jian
    Chen, Jie
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (01)
  • [26] Inexact proximal gradient algorithm with random reshuffling for nonsmooth optimization
    Xia JIANG
    Yanyan FANG
    Xianlin ZENG
    Jian SUN
    Jie CHEN
    Science China(Information Sciences), 2025, 68 (01) : 219 - 237
  • [27] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Najmeh Hoseini Monjezi
    S. Nobakhtian
    Journal of Global Optimization, 2021, 79 : 1 - 37
  • [28] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Hoseini Monjezi, Najmeh
    Nobakhtian, S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (01) : 1 - 37
  • [29] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang, Yang
    Pang, Liping
    Ma, Xuefei
    Shen, Jie
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 900 - 925
  • [30] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang Yang
    Liping Pang
    Xuefei Ma
    Jie Shen
    Journal of Optimization Theory and Applications, 2014, 163 : 900 - 925