ADAPTIVE PHASE-FIELD CONCURRENT MULTISCALE METHOD FOR EFFICIENT SIMULATION OF QUASI-BRITTLE FRACTURE

被引:0
|
作者
Ren, Bangke [1 ]
Zhu, Hehua [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Dept Geotech Engn, Shanghai 200092, Peoples R China
关键词
concurrent multiscale; s-version; adaptive; phase-field; fracture; FINITE-ELEMENT-METHOD; S-VERSION; CONSTITUTIVE MODEL; CRACK-PROPAGATION; DAMAGE MODEL; CONCRETE; FAILURE; XFEM;
D O I
10.1615/IntJMultCompEng.2022046668
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An adaptive phase-field concurrent multiscale method for efficient simulation of quasi-brittle fracture is presented. In this method, the analysis model is first subjected to coarse mesh discretization and the corresponding damage phase field calculation analysis. Then, adaptive dynamic local mesh refinement is performed for the coarse scale elements exceeding the given damage threshold during the iterative process. The locally refined mesh is defined as the local subdomain, the outermost coarse elements of the refined mesh, and the coarse elements without refinement are defined as the global subdomain. The variant s-version method is used to realize the direct coupling connection of mismatched meshes in different subdomains and the application of the continuity condition of field variables on the global-local subdomain interface. The division of the local subdomain, the global subdomain, and their overlapping domain are dynamically updated with the crack propagation path in the proposed method. The generation of the global-local computing mesh has great flexibility without the need for scale separation, which provides a more concise and flexible implementation for multiscale phase field adaptive simulation. The proposed method overcomes the extra burden and complexity of field variable conversion between coarse and fine scales, imposition of continuity conditions, and program implementation in existing phase field multiscale methods, which can be easily applied to the analysis on damage-fracture behavior of quasi-brittle structures. Typical examples verify the correctness, robustness, and advantages of the method.
引用
收藏
页码:67 / 89
页数:23
相关论文
共 50 条
  • [31] Adaptive refinement for phase-field models of brittle fracture based on Nitsche's method
    Muixi, Alba
    Fernandez-Mendez, Sonia
    Rodriguez-Ferran, Antonio
    COMPUTATIONAL MECHANICS, 2020, 66 (01) : 69 - 85
  • [32] An adaptive isogeometric phase-field method for brittle fracture in rock-like materials
    Li, Yicong
    Yu, Tiantang
    Natarajan, Sundararajan
    ENGINEERING FRACTURE MECHANICS, 2022, 263
  • [33] Adaptive refinement for phase-field models of brittle fracture based on Nitsche’s method
    Alba Muixí
    Sonia Fernández-Méndez
    Antonio Rodríguez-Ferran
    Computational Mechanics, 2020, 66 : 69 - 85
  • [34] An adaptive isogeometric phase-field method for brittle fracture in rock-like materials
    Li, Yicong
    Yu, Tiantang
    Natarajan, Sundararajan
    Engineering Fracture Mechanics, 2022, 263
  • [35] An efficient and robust monolithic approach to phase-field quasi-static brittle fracture using a modified Newton method
    Lampron, Olivier
    Therriault, Daniel
    Levesque, Martin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [36] A Comparative Review of XFEM, Mixed FEM and Phase-Field Models for Quasi-brittle Cracking
    M. Cervera
    G. B. Barbat
    M. Chiumenti
    J.-Y. Wu
    Archives of Computational Methods in Engineering, 2022, 29 : 1009 - 1083
  • [37] A robust method for the simulation of quasi-brittle materials
    Alnaas, Waled F.
    Jefferson, Anthony D.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING AND COMPUTATIONAL MECHANICS, 2016, 169 (03) : 89 - 108
  • [38] A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials
    Hai, Lu
    Li, Jie
    ENGINEERING FRACTURE MECHANICS, 2021, 252
  • [39] A Comparative Review of XFEM, Mixed FEM and Phase-Field Models for Quasi-brittle Cracking
    Cervera, M.
    Barbat, G. B.
    Chiumenti, M.
    Wu, J. -Y.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (02) : 1009 - 1083
  • [40] Quasi-Brittle Fracture of Ferromagnetic Material in a Magnetic Field
    Bolotov, A. N.
    Afanas'eva, L. E.
    Gul'tyaev, V. I.
    Alekseev, A. A.
    JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY, 2024, 53 (02) : 114 - 120