Multidefect Detection Tool for Large-Scale PV Plants: Segmentation and Classification

被引:6
|
作者
Rocha, Daniel [1 ,2 ,3 ]
Alves, Joao [1 ]
Lopes, Vitor [1 ,4 ]
Teixeira, Jennifer P. [1 ]
Fernandes, Paulo A. [1 ,5 ,6 ]
Costa, Mauro [7 ]
Morais, Modesto [8 ]
Salome, Pedro M. P. [1 ,9 ]
机构
[1] INL Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal
[2] Univ Minho, Algoritmi Res Ctr LASI, P-4710057 Guimaraes, Portugal
[3] Polytech Inst Cavado & Ave, Sch Technol, 2Ai, P-4750810 Barcelos, Portugal
[4] Univ Minho, Dept Mech Engn, Campus Azurem, P-4800058 Guimaraes, Portugal
[5] Univ Aveiro, I3N, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[6] Inst Politecn Porto, Inst Super Engn Porto, Dept Fis, CIETI, P-4200072 Porto, Portugal
[7] Dst Solar SA, Rua Pitancinhos, P-4711911 Braga, Portugal
[8] IEP Inst Electrotecn Portugues, P-4460817 Custoias, Portugal
[9] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2023年 / 13卷 / 02期
关键词
Class of abnormality; convolutional neural network (CNN); failure mode; image classification; image segmentation; large-scale photovoltaic (PV) plant; thermographic inspection;
D O I
10.1109/JPHOTOV.2023.3236188
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Unmanned aerial vehicles (UAVs) with high-resolution optical and infrared (IR) imaging have been introduced in recent years to perform inexpensive and fast inspections in operation and maintenance activities of solar power plants, reducing the labor needed, while lowering the on-site inspection time. Even though UAVs can acquire images extremely quickly, the analysis of those images is still a time-consuming procedure that should be performed by a trained professional. Therefore, a computer vision approach may be used to accelerate image analysis. In this work, a dataset of IR images was created from a 10-MW solar power plant and a comparative analysis between mask R- convolutional neural network (CNN) and U-Net was performed for two experiments. Concerning the defective module segmentation, the mask R-CNN algorithm achieved a mean average precision at intersection over union (IoU) = 0.50 of 0.96, using augmentation data. Regarding the segmentation and classification of failure type, the algorithm reached a value of 0.88 considering the same evaluation metric and data augmentation. When compared to the U-Net in terms of IoU, the mask R-CNN outperformed it with 0.87 and 0.83 for the first and second experiments, respectively.
引用
收藏
页码:291 / 295
页数:5
相关论文
共 50 条
  • [21] Reactive power assisted frequency regulation scheme for large-scale solar-PV plants
    Munkhchuluun, Enkhtsetseg
    Meegahapola, Lasantha Gunaruwan
    Vahidnia, Arash
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 146
  • [22] Low-Order Robust Damping Controller Design for Large-scale PV Power Plants
    Shah, Rakibuzzaman
    Mithulananthan, N.
    Lee, Kwang. Y.
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [23] Large-scale annotated dataset for cochlear hair cell detection and classification
    Buswinka, Christopher J.
    Rosenberg, David B.
    Simikyan, Rubina G.
    Osgood, Richard T.
    Fernandez, Katharine
    Nitta, Hidetomi
    Hayashi, Yushi
    Liberman, Leslie W.
    Nguyen, Emily
    Yildiz, Erdem
    Kim, Jinkyung
    Jarysta, Amandine
    Renauld, Justine
    Wesson, Ella
    Wang, Haobing
    Thapa, Punam
    Bordiga, Pierrick
    Mcmurtry, Noah
    Llamas, Juan
    Kitcher, Sian R.
    Lopez-Porras, Ana I.
    Cui, Runjia
    Behnammanesh, Ghazaleh
    Bird, Jonathan E.
    Ballesteros, Angela
    Velez-Ortega, A. Catalina
    Edge, Albert S. B.
    Deans, Michael R.
    Gnedeva, Ksenia
    Shrestha, Brikha R.
    Manor, Uri
    Zhao, Bo
    Ricci, Anthony J.
    Tarchini, Basile
    Basch, Martin L.
    Stepanyan, Ruben
    Landegger, Lukas D.
    Rutherford, Mark A.
    Liberman, M. Charles
    Walters, Bradley J.
    Kros, Corne J.
    Richardson, Guy P.
    Cunningham, Lisa L.
    Indzhykulian, Artur A.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [24] LARGE-SCALE METHANOL PLANTS.
    Tado, Yoshito
    Technical Review - Mitsubishi Heavy Industries, 1978, 15 (01): : 11 - 17
  • [25] Hierarchical Anomaly Detection and Multimodal Classification in Large-Scale Photovoltaic Systems
    Zhao, Yingying
    Liu, Qi
    Li, Dongsheng
    Kang, Dahai
    Lv, Qin
    Shang, Li
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (03) : 1351 - 1361
  • [26] Object detection and classification from large-scale cluttered indoor scans
    Mattausch, Oliver
    Panozzo, Daniele
    Mura, Claudio
    Sorkine-Hornung, Olga
    Pajarola, Renato
    COMPUTER GRAPHICS FORUM, 2014, 33 (02) : 11 - 21
  • [27] Empirical Analysis of Learnable Image Resizer For Large-Scale Medical Image Classification And Segmentation
    Rahman, M. M. Shaifur
    Alom, Md Zahangir
    Khan, Simon
    Taha, Tarek M.
    IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, NAECON 2024, 2024, : 56 - 61
  • [28] RdmkNet & Toronto-Rdmk: Large-Scale Datasets for Road Marking Classification and Segmentation
    Du, Jing
    Ma, Lingfei
    Li, Jing
    Qin, Nannan
    Zelek, John
    Guan, Haiyan
    Li, Jonathan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13467 - 13482
  • [29] An effective method for detection and location estimation of faults in large-scale solar PV arrays
    Kumar, Shubham
    Nayak, Paresh Kumar
    SOLAR ENERGY, 2024, 277
  • [30] Automatic hotspots detection based on UAV infrared images for large-scale PV plant
    Nie, Junfei
    Luo, Ting
    Li, Hui
    ELECTRONICS LETTERS, 2020, 56 (19) : 193 - 194