Hardy inequalities for magnetic p-Laplacians

被引:0
|
作者
Cazacu, Cristian [1 ,2 ,3 ]
Krejcirik, David [4 ]
Lam, Nguyen [5 ]
Laptev, Ari [6 ,7 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
[2] Univ Bucharest, ICUB Res Inst, 14 Acad St, Bucharest 010014, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, 13 Calea 13 Septembrie,Sect 5, Bucharest 050711, Romania
[4] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
[5] Mem Univ Newfoundland, Sch Sci & Environm, Grenfell Campus, Corner Brook, NF A2H 5G4, Canada
[6] Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[7] Sirius Univ Sci & Technol, Sirius Math Ctr, 1 Olymp Ave, Soci 354340, Russia
基金
加拿大自然科学与工程研究理事会;
关键词
L-p Hardy inequalities; magnetic fields; optimal constants; OPERATOR;
D O I
10.1088/1361-6544/ad1aee
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish improved Hardy inequalities for the magnetic p-Laplacian due to adding nontrivial magnetic fields. We also prove that for Aharonov-Bohm magnetic fields the sharp constant in the Hardy inequality becomes strictly larger than in the case of a magnetic-free p-Laplacian. We also post some remarks with open problems.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Nodal domain theorems for p-Laplacians on signed graphs
    Ge, Chuanyuan
    Liu, Shiping
    Zhang, Dong
    JOURNAL OF SPECTRAL THEORY, 2023, 13 (03) : 937 - 989
  • [22] A noncooperative elliptic system with p-Laplacians that preserves positivity
    Manásevich, R
    Sweers, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (04) : 511 - 528
  • [23] Eigenvalues for A Combination Between Local and Nonlocal p-Laplacians
    Leandro M. Del Pezzo
    Raúl Ferreira
    Julio D. Rossi
    Fractional Calculus and Applied Analysis, 2019, 22 : 1414 - 1436
  • [24] HOPF'S LEMMAS FOR PARABOLIC FRACTIONAL p-LAPLACIANS
    Wang, Pengyan
    Chen, Wenxiong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (09) : 3055 - 3069
  • [25] Random groups, random graphs and eigenvalues of p-Laplacians
    Drutu, Cornelia
    Mackay, John M.
    ADVANCES IN MATHEMATICS, 2019, 341 : 188 - 254
  • [26] EIGENVALUES FOR A COMBINATION BETWEEN LOCAL AND NONLOCAL p-LAPLACIANS
    Del Pezzo, Leandro M.
    Ferreira, Raul
    Rossi, Julio D.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1414 - 1436
  • [27] Regularity estimates for fractional orthotropic p-Laplacians of mixed order
    Chaker, Jamil
    Kim, Minhyun
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1307 - 1331
  • [28] Harnack inequality for p-Laplacians associated to homogeneous p-Lagrangians
    Capitanelli, Raffaela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (06) : 1302 - 1317
  • [29] Regularity results for p-Laplacians in pre-fractal domains
    Capitanelli, Raffaela
    Fragapane, Salvatore
    Vivaldi, Maria Agostina
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 1043 - 1056
  • [30] Some Quasilinear Elliptic Equations Involving Multiple p-Laplacians
    Pomponio, Alessio
    Watanabe, Tatsuya
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (06) : 2199 - 2224