A Robust WiFi Localization Algorithm Using Data Augmentation and Stacked Denoising Autoencoder

被引:1
|
作者
Zhuang, Changsheng [1 ]
Zhang, Dengyin [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
indoor positioning; data augmentation; stacked denoising autoencoder;
D O I
10.1109/CCDC58219.2023.10327620
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
based fingerprint localization technology has become one of the most practical methods for localizing mobile users due to its non-intrusive nature, low cost and no additional equipment required. However, the fluctuation of WiFi signal seriously affects the accuracy of WiFi fingerprint localization. To address this problem, this paper proposes a solution using data augmentation combined with stacked denoising autoencoder (SDAE). Data augmentation can facilitate the neural network to learn the mapping relationship between the fluctuating WiFi signals and coordinates. And the SDAE can obtain a robust and time-independent feature from the dynamic WiFi signal. A convolutional neural network is also used to build a floor classification model to determine the height, and a multilayer perceptron (MLP) is used to build a regression model to determine the relative coordinates. Experimental results on public datasets show that the method improves system robustness and localization accuracy.
引用
收藏
页码:1445 / 1450
页数:6
相关论文
共 50 条
  • [11] Fault Location in VSC-HVDC Using Stacked Denoising Autoencoder
    Luo, Guomin
    Hei, Jiaxin
    Liu, Yanying
    Li, Meng
    He, Jinghan
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 36 - 41
  • [12] Identification of Cancer Mediating Biomarkers using Stacked Denoising Autoencoder Model - An Application on Human Lung Data
    Sheet, Sougata
    Ghosh, Anupam
    Ghosh, Ranjan
    Chakrabarti, Amlan
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 686 - 695
  • [13] A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data
    Wang, Xingmei
    Zhao, Yixu
    Teng, Xuyang
    Sun, Weiqi
    APPLIED ACOUSTICS, 2020, 167
  • [14] Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier
    Liu, Jinping
    Xu, Longcheng
    Xie, Yongfang
    Ma, Tianyu
    Wang, Jie
    Tang, Zhaohui
    Gui, Weihua
    Yin, Huazhan
    Jahanshahi, Hadi
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 428 - 442
  • [15] Multi-Modal Stacked Denoising Autoencoder for Handling Missing Data in Healthcare Big Data
    Kim, Joo-Chang
    Chung, Kyungyong
    IEEE ACCESS, 2020, 8 : 104933 - 104943
  • [16] Robust Deep Neural Network Using Fuzzy Denoising Autoencoder
    Han, Hong-Gui
    Zhang, Hui-Juan
    Qiao, Jun-Fei
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (04) : 1356 - 1375
  • [17] Robust Deep Neural Network Using Fuzzy Denoising Autoencoder
    Hong-Gui Han
    Hui-Juan Zhang
    Jun-Fei Qiao
    International Journal of Fuzzy Systems, 2020, 22 : 1356 - 1375
  • [18] Crash data augmentation using variational autoencoder
    Islam, Zubayer
    Abdel-Aty, Mohamed
    Cai, Qing
    Yuan, Jinghui
    ACCIDENT ANALYSIS AND PREVENTION, 2021, 151
  • [19] Detecting Web Attacks using Stacked Denoising Autoencoder and Ensemble Learning Methods
    Truong, Dung
    Tran, Due
    Nguyen, Lam
    Mac, Hieu
    Tran, Hai Anh
    Bui, Tung
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 267 - 272
  • [20] Unsupervised domain adaptation forword sense disambiguation using stacked denoising autoencoder
    Ibaraki University, Department of Computer and Information Sciences, 4-12-1 Nakanarusawa, Hitachi, Ibaraki
    316-8511, Japan
    Pac. Asia Conf. Lang., Inf. Comput., PACLIC, (224-231):