Masked Swin Transformer Unet for Industrial Anomaly Detection

被引:69
|
作者
Jiang, Jielin [1 ,2 ,3 ,4 ]
Zhu, Jiale [1 ]
Bilal, Muhammad [5 ]
Cui, Yan [6 ]
Kumar, Neeraj [7 ,8 ,9 ]
Dou, Ruihan [10 ]
Su, Feng [11 ]
Xu, Xiaolong [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[5] Hankuk Univ Foreign Studies, Dept Comp & Elect Syst Engn, Yongin 17035, South Korea
[6] Nanjing Normal Univ Special Educ, Coll Math & Informat Sci, Nanjing 210038, Peoples R China
[7] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun 248007, India
[8] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
[9] King Abdulaziz Univ, Jeddah 22254, Saudi Arabia
[10] Univ Waterloo, Fac Math, Waterloo, ON N2L 3G1, Canada
[11] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Anomaly detection; inpainting; Swin Transformer; Unet;
D O I
10.1109/TII.2022.3199228
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The intelligent detection process for industrial anomalies employs artificial intelligence methods to classify images that deviate from a normal appearance. Traditional convolutional neural network (CNN)-based anomaly detection algorithms mainly use the network to restructure abnormal areas and detect anomalies by calculating the errors between the original image and reconstructed image. However, the traditional CNNs struggle to extract global context information, resulting in poor anomaly detection performance. Thus, a masked Swin Transformer Unet (MSTUnet) for anomaly detection is proposed. To solve the problem of insufficient abnormal samples in the training phase, an anomaly simulation and mask strategy is first applied on anomaly-free samples to generate a simulated anomaly and, then, the Swin Transformer's powerful global learning ability is used to inpaint the masked area. Finally, a convolution-based Unet network is used for end-to-end anomaly detection. Experimental results on industrial dataset MVTec AD show that MSTUnet achieves superior anomaly detection and localization performance.
引用
收藏
页码:2200 / 2209
页数:10
相关论文
共 50 条
  • [21] TransAS-UNet:融合Swin Transformer和UNet的乳腺癌区域分割
    徐旺旺
    许良凤
    李博凯
    周曦
    律娜
    詹曙
    中国图象图形学报 , 2024, (03) : 741 - 754
  • [22] SwinAnomaly: Real-Time Video Anomaly Detection Using Video Swin Transformer and SORT
    Bajgoti, Arpit
    Gupta, Rishik
    Balaji, Prasanalakshmi
    Dwivedi, Rinky
    Siwach, Meena
    Gupta, Deepak
    IEEE ACCESS, 2023, 11 : 111093 - 111105
  • [23] STD2: Swin Transformer-Based Defect Detector for Surface Anomaly Detection
    Mia, Md Sohag
    Li, Chunbiao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [24] Damaged Building Detection with Improved Swin-Unet Model
    Xu, Su
    He, Xiping
    Cao, Xiaoli
    Hu, Jian
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [25] Maxillary sinus detection on cone beam computed tomography images using ResNet and Swin Transformer-based UNet
    Celebi, Adalet
    Imak, Andac
    Uzen, Huseyin
    Budak, Umit
    Turkoglu, Muammer
    Hanbay, Davut
    Sengur, Abdulkadir
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2024, 138 (01): : 149 - 161
  • [26] 联合Swin Transformer和UNet的GAN人脸修复算法
    张梦澜
    现代计算机, 2024, 30 (06) : 32 - 37
  • [27] MSTAD: A masked subspace-like transformer for multi-class anomaly detection
    Kang, Borui
    Zhong, Yuzhong
    Sun, Zhimin
    Deng, Lin
    Wang, Maoning
    Zhang, Jianwei
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [28] SwinE-UNet3+: swin transformer encoder network for medical image segmentation
    Ping Zou
    Jian-Sheng Wu
    Progress in Artificial Intelligence, 2023, 12 : 99 - 105
  • [29] Swin Transformer and the Unet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction
    Hossain, Md. Biddut
    Shinde, Rupali Kiran
    Imtiaz, Shariar Md
    Hossain, F. M. Fahmid
    Jeon, Seok-Hee
    Kwon, Ki-Chul
    Kim, Nam
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2024, 2024
  • [30] RESIDUAL SWIN TRANSFORMER UNET WITH CONSISTENCY REGULARIZATION FOR AUTOMATIC BREAST ULTRASOUND TUMOR SEGMENTATION
    Zhuang, Xianwei
    Zhu, Xiner
    Hu, Haoji
    Yao, Jincao
    Li, Wei
    Yang, Chen
    Wang, Liping
    Feng, Na
    Xu, Dong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3071 - 3075