Optimization of Robust FeMnSmO x Catalyst for Low-Temperature (<150 °C) NH3-SCR of NO x

被引:6
|
作者
Ji, Xiaoyu [1 ,2 ,3 ]
Cai, Yandi [1 ,2 ,3 ]
Zhang, Bifeng [1 ,2 ,3 ]
Yu, Haowei [1 ,2 ,3 ]
Liu, Qinglong [1 ,2 ,3 ]
Wang, Xiuwen [4 ]
Liu, Annai [5 ]
Qian, Qiuhui [6 ]
Tong, Qing [1 ,2 ,3 ]
Tan, Wei [1 ,2 ,3 ]
Dong, Lin [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Ctr Modern Anal, Jiangsu Key Lab Vehicle Emiss Control, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Ctr Microscopy & Anal, Nanjing 211106, Peoples R China
[5] Sinopec Catalyst Co Ltd, Sinopec Grp, Beijing 100029, Peoples R China
[6] Suzhou Univ Sci & Technol, Sch Environm Sci & Engn, Natl & Local Joint Engn Lab Municipal Sewage Resou, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
CALCINATION TEMPERATURE; SUPPORTED MANGANESE; OXIDE CATALYSTS; SO2; TOLERANCE; NITRIC-OXIDE; SCR REACTION; REDUCTION; NH3; RESISTANCE; PERFORMANCE;
D O I
10.1021/acs.iecr.3c04018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To realize the efficient denitrification of low-temperature (<150 degrees C) flue gas in nonelectric industries, the most promising strategy is to develop NH3 selective catalytic reduction (NH3-SCR) catalysts with superior low-temperature activity. Conversely, the low working temperature offered great flexibility for tuning the calcination temperature during catalyst manufacturing. Herein, starting with the Sm-doped FeMnOx catalyst, an easy but practical strategy of calcination temperature regulation was proposed. With the increase in the calcination temperature from 300 to 600 degrees C, the low-temperature activity of FeMnSmOx increased first and then decreased, and 500 degrees C was the optimal calcination temperature. Detailed characterizations revealed that the calcination at 500 degrees C could better facilitate the formation of more weak acid sites and enhance the redox properties of FeMnSmOx, thus promoting the low-temperature NH3-SCR activity. NH3-SCR reaction on FeMnSmOx followed the "NO-assisted NH4NO3 pathway", in which gaseous NO would assist the reduction and decomposition of NH4NO3.
引用
收藏
页码:2705 / 2716
页数:12
相关论文
共 50 条
  • [31] Molybdenum modified Montmonrillonite clay as an efficient catalyst for low temperature NH3-SCR
    Chen, Dingsheng
    Feng, Jinxi
    Sun, Jingxiang
    Cen, Chaoping
    Tian, Shuanghong
    Yang, Juan
    Xiong, Ya
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2020, 95 (05) : 1441 - 1452
  • [32] NH3-SCR Activity of MnOx/CeO2 Catalyst at Low Temperature
    Xie, Junlin
    Gong, Pijun
    Zhang, Zhe
    He, Feng
    Li, Fengxiang
    Qi, Kai
    ADVANCES IN ENERGY AND ENVIRONMENTAL MATERIALS, 2018, : 951 - 957
  • [33] Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx
    Liu, Fudong
    Shan, Wenpo
    Lian, Zhihua
    Xie, Lijuan
    Yang, Weiwei
    He, Hong
    CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (10) : 2699 - 2707
  • [34] A Review of Mn-based Low Temperature NH3-SCR Denitration Catalyst
    Guo Z.
    Huo W.
    Zhang Y.
    Ren S.
    Yang J.
    Cailiao Daobao/Materials Reports, 2021, 35 (13): : 13085 - 13099
  • [35] Mechanochemical localization of vanadia on titania to prepare a highly sulfur-resistant catalyst for low-temperature NH3-SCR
    Hwang, Keon Ha
    Park, Namjun
    Lee, Hwangho
    Lee, Kyung-Min
    Jeon, Se Won
    Kim, Hyun Sub
    Lee, Yongkyu
    Kim, Tae Jin
    Lee, Won Bo
    Kim, Do Heui
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2023, 324
  • [36] Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO2 catalyst for low-temperature NH3-SCR
    Wu Xiaodong
    Si Zhichun
    Li Guo
    Weng Duan
    Ma Ziran
    JOURNAL OF RARE EARTHS, 2011, 29 (01) : 64 - 68
  • [37] Global kinetic modeling of low-temperature NH3-SCR for NOx removal using Cu-BEA catalyst
    Mohan, Sooraj
    Dinesha, P.
    MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 1321 - 1325
  • [38] Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR
    Leistner, Kirsten
    Olsson, Louise
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 165 : 192 - 199
  • [39] Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR
    Sun Meng-Ting
    Huang Bi-Chun
    Ma Jie-Wen
    Li Shi-Hui
    Dong Li-Fu
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (06) : 1501 - 1510
  • [40] Thulium oxides supported on MnCeTiOX catalysts for low-temperature NH3-SCR of NOX
    Lv, Shuyi
    Huang, Jian
    Chen, Yue
    Zhang, Qiyao
    Huang, Yongmin
    MATERIALS RESEARCH EXPRESS, 2022, 9 (06)