ZDP(n) ${Z}_{DP}(n)$ is bounded above by n2-(n+3)/2 ${n}∧{2}-(n+3)\unicode{x02215}2$

被引:0
|
作者
Zhang, Meiqiao [1 ]
Dong, Fengming [1 ]
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
关键词
chordal graph; DP-chromatic number; DP-coloring; join of graphs; GRAPHS;
D O I
10.1002/jgt.22952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2018, Dvorak and Postle introduced a generalization of proper coloring, the so-called DP-coloring. For any graph G $G$, the DP-chromatic number chi DP(G) ${\chi }_{DP}(G)$ of G $G$ is defined analogously with the chromatic number chi(G) $\chi (G)$ of G $G$. In this article, we show that chi DP(G proves Ks)=chi(G proves Ks) ${\chi }_{DP}(G\vee {K}_{s})=\chi (G\vee {K}_{s})$ holds for s=4(chi(G)+1)|E(G)|2 chi(G)+1 $s=\unicode{x02308}\frac{4(\chi (G)+1)|E(G)|}{2\chi (G)+1}\unicode{x02309}$, where G proves Ks $G\vee {K}_{s}$ is the join of G $G$ and a complete graph with s $s$ vertices. As a result, ZDP(n)<= n2-(n+3)/2 ${Z}_{DP}(n)\le {n}<^>{2}-(n+3)\unicode{x02215}2$ holds for every integer n >= 2 $n\ge 2$, where ZDP(n) ${Z}_{DP}(n)$ is the minimum nonnegative integer s $s$ such that chi DP(G proves Ks)=chi(G proves Ks) ${\chi }_{DP}(G\vee {K}_{s})=\chi (G\vee {K}_{s})$ holds for every graph G $G$ with n $n$ vertices. Our result improves the best current upper bound 1.5n2 $1.5{n}<^>{2}$ of ZDP(n) ${Z}_{DP}(n)$ due to Bernshteyn, Kostochka, and Zhu.
引用
收藏
页码:133 / 149
页数:17
相关论文
共 50 条
  • [41] A Polarization-Insensitive High-Resolution Micro-Spectrometer Using (N+3) x (N+3) Arrayed Waveguide Grating On SOI Platform
    Zou, Jun
    Li, Lingfeng
    Zhuang, Yuan
    Wang, Changhui
    Zhang, Ming
    Le, Zichun
    Wang, Xuyang
    Cai, Gaozhe
    Feng, Shilun
    He, Jian-Jun
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (01) : 226 - 232
  • [42] CROSS-SECTIONS FOR (N,2N) AND (N,3N) REACTIONS ABOVE 14 MEV
    VEESER, LR
    ARTHUR, ED
    YOUNG, PG
    PHYSICAL REVIEW C, 1977, 16 (05): : 1792 - 1802
  • [43] Crystal structure of N,N,N',N'-tetramethyl selenonyl diamide, SeO2(N(CH3)(2))(2)
    Zak, Z
    Ruzicka, A
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1996, 211 (07): : 486 - 486
  • [44] (TRIFLUOROMETHYLTHIOAMINO)BORANES .4. PREPARATION AND PROPERTIES OF [(CF3S)2N]NBX3-N WITH N = 3, N = 2, X = CL, BR, N3, AND N = 1, X = N3
    HAAS, A
    WILLERTPORADA, M
    CHEMISCHE BERICHTE-RECUEIL, 1985, 118 (04): : 1463 - 1475
  • [45] Adiabatic reactions on excited electronic states of N 2 O: First computations on the O( 3 P)+N 2 (X) →N( 2 D)+NO(X) and O( 3 P)+N 2 (A) → N( 4 S)+NO(X) reactions
    Galvao, Breno R. L.
    Gomes, Alexandre C. R.
    Mota, Vinicius C.
    Guo, Hua
    CHEMICAL PHYSICS LETTERS, 2024, 844
  • [46] FURTHER-STUDIES OF THE N-2(+) + N2-]N-4(+) ASSOCIATION REACTION
    SMITH, D
    ADAMS, NG
    ALGE, E
    CHEMICAL PHYSICS LETTERS, 1984, 105 (03) : 317 - 321
  • [48] “N+3”评课议课策略
    白玉凤
    陕西教育(教学版), 2016, (04) : 72 - 72
  • [49] 关于G(n,n+3)网的树-优图公式(英文)
    陈明明
    郭红
    抚顺石油学院学报, 1999, (04) : 66 - 71+82
  • [50] ELECTRON-STATES IN [NI-3(CO)6]N2- AND [PT-3(CO)6]N2-
    BULLETT, DW
    CHEMICAL PHYSICS LETTERS, 1985, 115 (4-5) : 450 - 453