Conventional to Deep Ensemble Methods for Hyperspectral Image Classification: A Comprehensive Survey

被引:26
|
作者
Ullah, Farhan [1 ]
Ullah, Irfan [2 ]
Khan, Rehan Ullah [3 ]
Khan, Salabat [1 ]
Khan, Khalil [4 ]
Pau, Giovanni [5 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Chengdu Univ Technol, Sch Comp Sci, Chengdu 610059, Peoples R China
[3] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah 52571, Saudi Arabia
[4] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Comp Sci, Astana 010000, Kazakhstan
[5] Kore Univ Enna, Enna, Italy
关键词
Convolutional neural network (CNN); deep ensemble; deep learning (DL); hyperspectral image classification (HSIC); spatial features; spectral features; SPECTRAL-SPATIAL CLASSIFICATION; CONVOLUTIONAL NEURAL-NETWORKS; GENERATIVE ADVERSARIAL NETWORKS; STACKED SPARSE AUTOENCODER; SCENE CLASSIFICATION; FEATURE-EXTRACTION; RANDOM FOREST; DIMENSIONALITY REDUCTION; DENOISING AUTOENCODER; LEARNING ALGORITHM;
D O I
10.1109/JSTARS.2024.3353551
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral image classification (HSIC) has become a hot research topic. Hyperspectral imaging (HSI) has been widely used in a wide range of real-world application areas due to the in-depth spectral information stored within each pixel. Noticeably, the detailed features, i.e., a nonlinear correlation between the obtained spectral data and the correlating HSI data object, generate efficient classification results that are complex for traditional techniques. Deep learning (DL) has recently been validated as an influential feature extractor that efficiently identifies the nonlinear issues that have arisen in various computer vision challenges. This motivates using DL for HSIC, which shows promising results. This survey provides a brief description of DL for HSIC and compares cutting-edge methodologies in the field. We will first summarize the key challenges for HSIC, and then, we will discuss the superiority of DL and DL ensemble in addressing these issues. In this article, we divide state-of-the-art DL methodologies and DL with ensemble into spectral features, spatial features, and combined spatial-spectral features in order to comprehensively and critically evaluate the progress (future research directions as well) of such methodologies for HSIC. Furthermore, we will take into account that DL involves a substantial percentage of labeled training images, whereas obtaining such a number for HSI is time and cost consuming. As a result, this survey describes some methodologies for improving the classification performance of DL techniques, which can serve as future recommendations.
引用
收藏
页码:3878 / 3916
页数:39
相关论文
共 50 条
  • [21] Effect of denoising on hyperspectral image classification using deep networks and kernel methods
    Jacob, Naveen Varghese
    Sowmya, V
    Soman, K. P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2067 - 2073
  • [22] The relative performance of ensemble methods with deep convolutional neural networks for image classification
    Ju, Cheng
    Bibaut, Aurelien
    van der Laan, Mark
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (15) : 2800 - 2818
  • [23] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [24] Deep mixed precision for hyperspectral image classification
    M. E. Paoletti
    X. Tao
    J. M. Haut
    S. Moreno-Álvarez
    A. Plaza
    The Journal of Supercomputing, 2021, 77 : 9190 - 9201
  • [25] DEEP FEATURE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Jiming
    Bruzzone, Lorenzo
    Liu, Sicong
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4951 - 4954
  • [26] DEEP RESIDUAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhong, Zilong
    Li, Jonathan
    Ma, Lingfei
    Jiang, Han
    Zhao, He
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1824 - 1827
  • [27] Deep mixed precision for hyperspectral image classification
    Paoletti, M. E.
    Tao, X.
    Haut, J. M.
    Moreno-Alvarez, S.
    Plaza, A.
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (08): : 9190 - 9201
  • [28] DEEP TENSOR FACTORIZATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Chen, Jingzhou
    Zhang, Wei
    Qian, Yuntao
    Ye, Minchao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4788 - 4791
  • [29] Deep Learning for Hyperspectral Image Classification: An Overview
    Li, Shutao
    Song, Weiwei
    Fang, Leyuan
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6690 - 6709
  • [30] Deep Manifold Embedding for Hyperspectral Image Classification
    Gong, Zhiqiang
    Hu, Weidong
    Du, Xiaoyong
    Zhong, Ping
    Hu, Panhe
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10430 - 10443