High order approximations of the Cox-Ingersoll-Ross process semigroup using random grids

被引:0
|
作者
Alfonsi, Aurelien [1 ,2 ]
Lombardo, Edoardo [1 ,2 ,3 ]
机构
[1] Ecole Ponts, CERMICS, Marne La Vallee, France
[2] Inria, MathRisk, Paris, France
[3] Univ Roma Tor Vergata, CERMICS, Rome, Italy
关键词
weak approximation schemes; random grids; Cox-Ingersoll-Ross model; Heston model; DISCRETIZATION SCHEMES; NUMERICAL SCHEMES; TERM STRUCTURE; CIR;
D O I
10.1093/imanum/drad059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new high order approximations schemes for the Cox-Ingersoll-Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021, A generic construction for high order approximation schemes of semigroups using random grids. Numer. Math., 148, 743-793) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010, High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp., 79, 209-237) for the CIR leads to weak approximations of order $2k$, for all $k\in{{\mathbb{N}}}<^>{\ast }$. Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.
引用
收藏
页码:2277 / 2322
页数:46
相关论文
共 50 条
  • [21] Cox-Ingersoll-Ross模型的统计推断
    舒丽玲
    周占功
    嘉兴学院学报, 2006, (S1) : 188 - 192+235
  • [22] Fractional Levy Cox-Ingersoll-Ross and Jacobi processes
    Fink, Holger
    Schluechtermann, Georg
    STATISTICS & PROBABILITY LETTERS, 2018, 142 : 84 - 91
  • [23] Cox-Ingersoll-Ross模型的统计推断
    陈萍
    杨孝平
    应用概率统计, 2005, (03) : 285 - 292
  • [24] 跳跃扩散Cox-Ingersoll-Ross利率模型
    盛洁
    闫理坦
    苏州科技大学学报(自然科学版), 2018, 35 (01) : 33 - 38
  • [25] THE RUNNING MAXIMUM OF THE COX-INGERSOLL-ROSS PROCESS WITH SOME PROPERTIES OF THE KUMMER FUNCTION
    Gerhold, Stefan
    Hubalek, Friedrich
    Paris, Richard B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2022, 13 (02): : 1 - 18
  • [26] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [27] Parameter estimation for Cox-Ingersoll-Ross process with two-sided reflections
    Shi, Yiwei
    Shu, Huisheng
    Wang, Chunyang
    Zhang, Xuekang
    STATISTICS & PROBABILITY LETTERS, 2025, 221
  • [29] SHARP LARGE DEVIATIONS FOR THE DRIFT PARAMETER OF THE EXPLOSIVE COX-INGERSOLL-ROSS PROCESS
    de Chaumaray, M. du Roy
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2020, 65 (03) : 454 - 469
  • [30] An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process
    Dereich, Steffen
    Neuenkirch, Andreas
    Szpruch, Lukasz
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140): : 1105 - 1115